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This book, which grew out of lectures given at the NASA Lewis Research 
Center, introduces the scientist and engineer with the usual background in 
applied mathematics to the concepts of abstract analysis. The emphasis is not 
on preparing the reader to do research in the field but on giving him some of 
the background necessary for reading the literature of pure mathematics. 

Although the material here is by no means original, the presentation 
differs in some respects from texts on material of this nature. The proofs are 
more detailed herein and quite easy to follow. We have attempted to indicate 
how the material relates to and serves as a foundation for more advanced sub- 
jects. We have also attempted at several places to show how the material 
covered here relates to the more familiar “real mathematics.” Enough examples 
are included to illustrate the concepts. No attempt is made to indicate the 
original sources of the material or even to point out the originators of all the 
concepts. Contrary to the usual practice, the relation between convergence 
and continuity on the one hand and algebraic operations on the other is dis- 
cussed in the abstract setting of linear spaces. This is done principally to famil- 
iarize the reader with these very important concepts in a reasonably simple way. 

V 



CHAPTER 1 

Elementary Set Concepts 
Aside from being one of the principal tools of mathematics, set theory 

serves also as a unifying principle and foundation upon which mathematics 
can be based. A few mathematicians might even claim that mathematics is 
nothing more than set theory. In any event, attempts to put’ mathematics on 
set theoretic foundations have led to important contributions to the under- 
standing of some of the more basic concepts of mathematics. However, our 
interest here in set theory is its use as a tool in mathematics. 

The study of sets began with Cantor, around 1874, and grew out of his 
studies of the fundamental aspects of trigonometric series. Around the turn of 
the century great progress had been made in the theory of sets by Cantor, 
Russell, Frege, and others, and it appeared that there could be nothing which 
would prevent basing all mathematics on set theory alone. However, in 1903, 
when Frege was about to publish the second volume of his “Grundgesetze der 
Arithmetik,” which was essentially his life work and relied heavily on the theory 
of sets, Russell sent Frege his ingenious paradox, which seemed so shattering 
to the foundations of set theory that Frege closed this volume with the following 
acknowledgment: 

A scientist can hardly encounter anything more undesirable than to have the foundation 
collapse just as the work is finished. I was put in this position by a letter from Mr. Bertrand 
Russell when the work was almost through the press. 

Immediately set theoretic paradoxes began appearing in large numbers. In 
some sense these paradoxes always seem to stem from the fact that sets which 
are “too large” are encountered. From a practical point of view these paradoxes 
may be avoided by always assuming that there is some possibly large but 
fixed set from which, roughly speaking, all objects, which are considered in a 
given discussion, are taken. We will express this principle a little more pre- 
cisely in the subsequent discussion. 

This procedure assures that no known paradoxes will occur, but we can 
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ABSTRACT ANALYSIS 

never be absolutely certain that any system will be completely free from contra- 
dictions. This was pointed out by Gijdel who proved that no consistent system 
can be used to prove its own consistency. 

It is possible to treat set theory itself as a mathematical discipline by 
taking the concepts of set and membership as undefined and then setting up 
exact rules to describe their interrelation. However, we make no attempt to 
develop “axiomatic set theory” here. On the contrary, our aim is only to develop 
(in a fairly intuitive way) those concepts of set theory which will be useful for 
the work in the following chapters. In this way, we shall follow the ideas of 
Halmos as set forth in his “Naive Set Theory” (ref. 1). 

Before proceeding with the discussion of sets, let us briefly introduce 
some terminology which is encountered frequently in mathematics. 

Statements which must be either true or false (even though we may not 
know which) are called propositions. For example, “Sauerkraut is better than 
potato salad” is a statement which cannot be classified as being either true 
or false. On tbe other hand, a statement such as “The sauerkraut sold in this 
supermarket is more expensive per pound than the potato salad” is a statement 
which must be either true or false. In this chapter propositions will be desig- 
nated by single letters. 

Suppose that p and q are any two propositions. In mathematics, the sen- 
tences “p  implies q”, “$p, then q”, “p only if q”, ‘) is a suficient condition 

fo r  q”, and “q is a necessary condition for  p” occur frequently. They all mean 
that whenever the proposition p is true, then the proposition q must also be 
true or, what is the same thing, whenever q is false,p must also be false (for 
if q were false, p could not be true since this would imply that q had to be true 
also). The sentences “p is necessary and suficient for  q” and “p if and only 
if q” mean both p implies q and q implies p .  The first of these shows that if p 
is true, q must be true. The second shows that if p is false, then q is false also. 
Hence, p and q must either both be true or both be false. Thus, for example, if 
the proposition p is “Paul is taller than Harry” and the proposition q is “Harry 
is shorter than Paul,” it is clear that p if and only if q. If p is the proposition 
“Paul is taller than Harry and Harry is taller than Mary” and q is the proposition 
“Paul is taller than Mary,” it is clear that p implies q but it is not true that q 
implies p .  

A set is any collection of objects called elements or members. The only 
characteristic of a set is the particular objects which it contains. Sets are 
generally denoted by capital letters. Lowercase letters are used mostly for the 
members of sets. The notation xEE means that x is a member of the set E ,  
2 
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and x is said to be contained in E or to belong to E or, simply, to be in E. The 
negation of the statement xEE, denoted by x e E ,  means that x is not a member 
of E. For example, if E is the set of positive integers, then 2 E E but - 2 4 E. 
In general, a diagonal line running through a symbol usually denotes the logical 
“not statement:” for example, the symbol # means “not equal to.” 

Sets are, in fact, completely determined by the members which they 
contain. In line with this idea we make the following definition of equality. 

Definition 1.1: Two sets E and D are said to be the same set or equal 
if they contain the same objects. This is denoted by writing E = D. 

Stated in a slightly difTerent way, the two sets E and D are deJined to be 
equal i f  there is no element of E which is not an element of D and if there is no 
element of D which is not an element of E. This means that E and D are equal 
if every element of E is an element of D and every element of D is an element 
of E. From a practical point of view this last form of the definition of equality 
is the most useful one because it is most directly related to the method most 
used in practice to decide if two sets are equal. It will be useful to have a special 
name (subset) for the situation when the first half (but not necessarily the second 
half) of the requirements of this definition is met by two sets. 

Definition 1.2: I f  there is no element of a set E which is not an  element 
of a set D ,  E is said to be a subset of D ,  or E is said to be contained or in- 
cluded in D ,  or D is said to contain E. This is denoted by writing E C D  or 
sometimes D> E. 

This definition means that if E C D  then every element o f E  must be an 
element of D. Note that the symbol C only connects sets. If D is the set of 
positive integers and E is the set whose elements are 1, 2, and 3, then ECD.  
However, it is not correct to write 2CD. 

It is often very helpful to visualize sets as regions in the plane. The pictures 
obtained in this way corresponding to the various types of operations between 
sets (which will be discussed subsequently) are called Venn diagrams. Figure 
1-1 illustrates the meaning of “D is a subset of E.” 

To avoid any of the known set theoretic paradoxes, mathematical struc- 
tures are always set up in a manner which assures that there is some large but 
fixed set X (sometimes referred to as the universal set) such that all sets which 
arise can be considered as being either subsets of X or sets whose elements are 
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FIGURE 1-1.-Venn diagram for D C E .  

subsets of X ,  etc. Sometimes this universal set is not mentioned explicitly in a 
given discussion but it will always be clear from the context that such a set 
exists. There is no reason why the elements of sets cannot be sets themselves! 
In fact, this is a situation which frequently arises in mathematics. Sets whose 
elements are sets are usually called families or collections in order to keep the 
various levels of set construction clearly in view. Actually, there is no reason 
why a given set D cannot simultaneously have a set E as one of its elements 
and an element of E as another. For example, suppose that the universal set is 
the set of positive integers and that the set E consists of the elements 1 and 2. 
If D is the set whose elements are 1, 2, 3 ,  and E ,  then it is not only true that 
E E D, but it is also true that E C D. On the other hand, if D is the set whose 
elements are 1, 3 ,  and E ,  it is still true that E E D but it is no longer true that 
E C D. Thus, a set E is not a subset of a set D unless all the elements of E are 
included among the elements of the set D. This example illustrates a difference 
between elements and sets. It is, however, unfortunate that both the symbols 
E and C are read as contained in even though they refer to very diferent 
things. Sometimes, then, it is necessary to decide from the context which of 
these two meanings is to be attributed to the phrase “contained in.” 

The form of the definition of equality of sets is given in the paragraph 
immediately following Definition 1.1 shows that, if E and D are any two sets, 
E = D  if and only if E C D and D C E. It also follows directly from Definition 
1.2, for arbitrary sets E ,  D, and A ,  that if E C D and D C A ,  then E C A .  
4 
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According to the wording of Definition 1.2, E C E for every set E. On the other 
hand, for any reasonable set E ,  it is never true that E E E .  If E C D and there 
is at least one element of D which is not an element of E (i..e., the second half 
of the requirements of the last form of the definition of equality is not met), 
E is said to be a proper subset of D. 

Some authors use the notation E C D to mean E is a proper subset of D. 
If this is done, they write E D where we have writtenE C D. We shall not 
follow this convention here. 

One usually conceives of sets as having at least some elements but as it 
turns out it is very desirable to consider also the set which has no elements. 
Because a set is completely determined by its elements, there is only one such 
set and it is denoted by the symbol 0 and called the empty set. Now 0 must be a 
subset of every set D, since (3 contains no elements and therefore there is no 
element of 0 which is not an element of D. 

Clearly, if E,  D, and A are any subsets of a set X, andx is any element ofX, 
statements like “E C D,” “E C D and D C A,” “x E E,”etc., are propositions. 
Large parts of mathematical proofs are composed of statements containing 
propositions of these types. 

Before discussing the methods for specifying sets it will be helpful to 
introduce a certain concept from logic. Propositions usually contain the 
“names” of (or symbols for) certain objects. For example, the proposition “Paul 
is taller than Harry” discussed previously contains the names of the objects 
Paul and Harry. If E is a particular subset of some universal set X and t is a 
particular element of X ,  then the statement “tEE” is a proposition which 
contains the “names” of the objects t and E.  In this latter example, we can 
obtain a different proposition by replacing t by the name of some other element 
of X and, in general, can obtain an entire collection of propositions by succes- 
sively replacing t by the names of all the elements of X .  This collection of 
propositions may be described as consisting of all propositions “xEE” as 
x varies over all the elements of X .  Any statement of this type, which contains 
a symbol x of variable meaning in a place where the “name” of a particular 
object would normally occur and which becomes a proposition when x is 
replaced by the “name” of a member of some set D, is called a propositional 
scheme and is denoted by a symbol such as P ( x ) .  The set D is called the domain 
of P ( x )  . If s is the “name” of some member of D, the proposition resulting from 

1 In fact, this situation can occur if we do not limit the size of sets as explained previously. Since this is always 
done in mathematics, for our purposes it is never true that E E E.  
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replacing x by s in P ( x )  is denoted by P ( s ) .  Thus, in the preceding example, 
P ( x )  is the symbol for “xE E” and the domain (i.e., D) of P ( x )  is X .  Note that 
x serves only to save the place where the name of an object is to be inserted. 

Effectively, sets are specified in one of two ways. First, if a set consists of a 
finite number of elements, since a set is completely determined by its elements, 
we can specify the set by listing its elements. When this is done, the elements 
are enclosed by braces and separated by commas. Thus {d ,  1, 2, 3) is the set 
whose elements are d,  1, 2, and 3. For sets with an “infinite” number of ele- 
ments, this procedure cannot be used. 

On the other hand, suppose P ( x )  is some propositional scheme with a 
domain D. For each particular element S E D ,  P ( s )  will either be true or false. 
There will then be a certain subset of D, say E ,  which consists of all the ele- 
ments x of D for which P ( x )  is true. The set E is denoted by 

E =  { x € D I P ( x ) }  

which reads “E is the set of all x contained in  D such that P ( x )  (is true) ,” the 
words in parentheses usually being omitted. Sometimes, when it is understood 
from the context, the domain D is omitted and we write 

For example, suppose P ( x )  is the propositional scheme x2=x and its domain 
is the set J of all positive integers. Then the set {xEJJx2=x} is the set of 
xEJ (or the set of all positive integers x) such that x2=x. This is just the one 
element subset { l} of J .  On the other hand, the set {xE Jlx+ 1 =x> is the 
empty set 0. 

In this manner then, every propositional scheme defines a set and since, 
for any set E ,  “x E E” is a propositional scheme, every set determines a 
propositional scheme. In fact, this method of specifying sets includes the 
method of listing the elements. For example, if E =  (1, 2, 3) and J is the set 
of all positive integers, then 

E = { %  E J(x E { 1 , 2 , 3 } }  

since x E (1, 2, 3) is a propositional scheme. 
We might point out that two different propositional schemes, say P ( x )  and 

Sometimes one element sets are called singleton sets. A distinction is always made between a one element set 
and the element itself. Thus { 1) is a different object than 1. 
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Q ( x ) ,  with the same domain D may define the same set. For suppose that, for 
each d E D ,  P ( d )  if and only if Q ( d ) .  Then P ( x )  and Q ( x )  are either both 
true or both false at every point x E D. Hence, the set of all x for which P ( x )  is 
true is the same as the set of all x for which Q ( x )  is true. That is 

{x E DIP(x ) }=  {x E D I Q ( 4 1  (1-1) 

On the other hand, if equation (1-1) holds, then, for any d E D ,  either 
d E {x E DIP(%)}  in which case d E {x E DIQ(x ) }  and hence P ( d )  and 
Q ( d )  are both true or d e {x E D I P ( x ) }  in which case d {x E D I Q ( x ) }  and 
hence P ( d )  and Q ( d )  are both false. Thus, P ( d )  if and only Q ( d )  . 

In a similar way, it can be seen that the inclusion 

means that for all d E D ,  P ( d )  implies Q ( d ) .  
The preceding paragraph illustrates how statements involving proposi- 

tional schemes can be transformed into relations between sets. In fact, it is gen- 
erally true that propositional schemes, which arise naturally in any logical 
reasoning process and which may involve very complicated ideas, can be 
replaced by sets which are much easier to think about. This is the reason why 
set theory is such an important tool in mathematics. 

We now introduce some elementary ways of combining sets to form new 
sets. Note that we always assume sets under consideration are subsets of some 
fixed set X .  

Definition 1.3: The union, D U E ,  of two sets D and E is the set which 
consists of all elements which are either in D o r 3  in E. Or, 

D U E= {XI. E D or x E E }  

This definition is illustrated in figure l-Z(a). 

Definition 1.4: The intersection, D n E ,  of two sets D and E is the 
set which consists of all elements which belong to both D and E. Or, 

D f l  E={xlx  E D a n d x  E E }  

In mathematics the word “or” is always interpreted as meaning “and/or.” This is called the “inclusive or.” 
Thus the statement “the colors are yellow or red” means that the colors may be yellow or they may be red or they may 
be both yellow and red. 
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(C) 

(a) D U E. 
(c) D - E .  

(d) 

(b) D f l  E. 
(d) EC. 

FIGURE 1-2. -Venn diagrams for elementary set operations. (Shaded areas denote the indicated 
sets.) 

If D n E=@, D and E are said to be disjoint or noninterseeting. I f  
D n E # $3, D is said to intersect E. 

This definition is illustrated in figure 1-2(b). 
It is easy to prove from these definitions that, for any two sets D and E ,  

D C D  u E , E  c D U E,  D n E c D , a n d D  n E C E .  

Definition 1.5: The ifferenee, D-E,  of two sets D and E is the set 
which consists of all elements of D which are not elements of E .  Or, 
8 
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,Idempotent Law ........................... 
Commutativity.. ........................... 
Associativity.. .............................. 

Identity ...................................... 

Complements .............................. 

DeMorgan’s Law ........................... 

Distributive Law ........................... 

D-E={x lx  E D and x 4 E }  

Identity 

D U D = D  D n D = D  
D U E = E U D  D n E = E n D  

( D  u E )  u G=D u ( E  u G )  ( D  n E )  n G=D n ( E  n G )  
D U ( E  n G ) = ( b  U E )  n ( D  U G )  D n ( E  U G ) = ( D  n E )  U ( D  n G )  

D U @ = D  D n X = D  
D U X = X  o n @ = @  

D U Dc=X D - E = D n E c  D n D c = @  
(Dc)c=D X c = @  @ c = X  

( D  u E ) C =  D= n E C  ( D  n E)‘= DC u E C  

If E C D ,  D - E  is called the comp ement of E in D ,  or the complement of 
E relative to D. 

I f  X is the universal set, X - E  is called the complement of E and is 
denoted by a superscript c; thus, X - E = E“. Clearly, 

E“= {xlx 4 E }  

This definition is illustrated in the Venn diagrams of figures 1-2(c) and (d). 
There are a number of relations which connect these operations. Some of 

the more important ones are listed in table 1-1. The proofs of some of the laws 
in table 1-1 are simple consequences of their definitions. Since the intersection 

and union of sets are just the set theoretic equivalents of the simple logic con- 
nectives, “and” and “or,” the identities involving only unions and intersections 
can be proved by expressing them in terms of a corresponding law of logic. 
There is an essentially equivalent procedure to this which is better suited to 
our purposes since it demonstrates a frequently used technique. We will demon- 
strate the procedure by proving the first distributive law. Set L = D U ( E  n G )  
a n d R =  ( D  U E )  f l  ( D  U G). If x E L ,  then x is either in D or in E n G. 

First suppose that x E E n G ;  then x E E and x E G. It must also be true, 
therefore, that x E D U E and x E D U 6;  hence, x E ( D  U E )  n ( D  U G). 

On the other hand, if x E D ,  then it is certainly true that x E D U E and 
x E D U G; that is,x E ( D  U E )  fl ( D  U G). In either case, then,x E L implies 
that x E R .  This shows, since x was an arbitrary element of L ,  that L C R .  

Conversely, suppose x E R ;  then, x E D U E and x E D U G.  Hence, if 
9 
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x 4 D, then x E E and x E G.  That is, x E E n G so it must also be true that 
x E D  U ( E  n G ) .  On the other hand, if x E D, then certainly x E D  U ( E  n G ) .  
Since either x 4: D or x E D must be true, we conclude that x E L ;  hence, 
R C L.  Combining this with L C R, we conclude that L = R .  

This is an extremely detailed proof of a very simple statement, but it was 
included to illustrate the method. 

The proofs of one of DeMorgan’s laws and the second distributive law are 
given for a more general case in chapter 5. The rest of the entries in table 1-1 
are more or less direct consequences of the preceding definitions. Some of the 
relations in table 1-1 are illustrated in the Venn diagrams of figure 1-3. 

The associativity of the unions and intersections of sets shows that we 
can write such things as D U E U G or D n E n G with no danger of misinter- 
pretation. It is clear that 

( D  U E )  U G={xJx E D or x E E or x E G} 

The associative law and consequently the omission of parentheses can be 
extended to the unions and intersections of any finite number of sets. 

If D and E are two sets, it is easy to verify that if one of the following three 
relations is true the other two must be also: 

D C E  (1-2a) 

D n E = D  (1-2b) 

D U E = E  (1-2c) 

These can be proved very simply by using the same procedure as in the proof 
of the distributive law. It is quite easy to see, for any sets D, E ,  and G ,  that 
D C G and E C G ,  if and onlyifD U E C G ,  and that G C D and G C E ,  if and 
only if G C D n E. 

Sets are defined in such a way that they have no internal organization. 
Thus, the set { p ,  q} is the same as the set { q ,  p } .  The need, however, arises 
for “sets” which do have some internal organization; that is, “sets” in which 
the order of the elements is relevant. A collection of two objects, in which we 
distinguish between the first object and the second object, is called an ordered 
pair. The ordered pair whose first element is p and whose second eZement is q 
is denoted by ( p ,  q ) .  Thus, according to this definition, 

( p ,  q )  = ( s ,  t )  if and only if p = s  and q=t (1-3) 
10 
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i 

(a) D U ( E n  G). (b) D f l  ( E  U G )  
(c) D n E n G .  

FIGURE 1-3. -Venn diagrams for set theoretic identities. (Shaded areas denote the indicated 
sets.) 

and therefore 
( P ,  4 )  # (47 P )  if P + 4 

An alternate definition of an ordered pair which does not introduce the 
concept of order but contains it could have been given. This can be accom- 
plished by setting 

1 1  355-525 0-70-2 
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It is not hard to show that equation (1-4) satisfies the condition (1-3) and there- 
fore constitutes an acceptable definition of ordered pair (actually some proof 
is needed to show this). But this is unnecessary elegance for our purposes and 
the definition given previously will suffice. 

In a similar manner, we can define the ordered triple ( p ,  q, s) to be the 
collection of three elements in which the first, second, and third elements are 
distinguished from one another, and, in general, the ordered n-tuple to be the 
collection (p1, p 2 ,  . . . , p,) in which the order of all n elements is distinguished. 

It is often useful to distinguish, by special notation, sets whose elements 
are ordered pairs or, in general, ordered n-tuples. Thus, if D and E are any 
two sets, the set of all ordered pairs (d ,  e),  whose first element is in D and 
whose second element is in E ,  is called the direct product or Cartesian product 
of D and E and is denoted by D X E. Symbolically then, D X E is the set 

D X E = { ( d , e ) I d E D a n d e  € E )  

and, in general, for any n sets D1, D2, . . . , D, we can define the direct product 
D1 X . . . X D n  of D1, D2, . . ., D, to be the set 

DIX.  . .XDn={(dl , .  . . ,&) /d l  € & a n d .  . .dn€D,} 
11 

Sometimes the notation X Di.is used for D1 X . . . X D,. 
i= 1 

For example, if D={1, 2) and E={3, 4}, then 'DXE={( l ,  3), (1, 4), 

There is nothing in this definition which requires that D and E be different 
sets. Since every point in a two-dimensional plane is located by giving exactly 
two numbers (i.e., the coordinates of that point), we may think of a point in the 
plane as being an ordered pair of real numbers: the first element of the ordered 
pair being the first coordinate, and the second element the second coordinate. 
The entire two-dimensional plane is then the set of all the ordered pairs of real 
numbers that can be formed. Thus, the two-dimensional plane is the direct 
product of the set of real numbers with itself. We shall discuss this again in a 
more general context in chapter 3. 

( 2 , 3 ) ,  (274)). 

It should be noted that 

D x E x G Z D x  (ExG) # ( D x E ) x G  

since 

12 
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x E x G = { ( d , e , g ) I d E D a n d e E E a n d g E G }  
D X  ( E x G ) = { ( d ,  ( e , g ) ) l d  E D  and ( e , g )  E E X G }  
( D x E ) x G = { ( ( d ,  e ) , g ) I ( d , e )  E D X E a n d g E G }  

and ( d ,  e ,  g ) ,  ( d ,  (e,  g ) )  and ( ( d ,  e ) ,  g) are not the same objects. This dis- 
tinction is, however, unnecessary for our purposes and, since no contradiction 
can arise if we do so, we shall consider ( d ,  e ,  g ) ,  ( d ,  ( e ,  g ) ) ,  and ( ( d ,  e ) ,  g )  
to all be the same object-namely, the ordered triple. With this convention, 
the direct product is associative. Of course all these remarks apply to the 
ordered n-tuple. The direct product is not commutative since this contradicts 
the meaning of the ordered pair. 

13 





CHAPTER 2 

Real Numbers 
The development of a rigorous theory of the abstract concepts of analysis 

discussed herein requires precise specification of the properties of the real 
numbers. In addition, many of the abstract concepts of analysis are generaliza- 
tions of certain properties of the real numbers. A better understanding of these 
concepts is often obtained when they are compared with the properties of the 
real numbers from which they came. For these reasons, the properties of the 
real numbers must be formalized in a manner that will subsequently be useful. 
Most books concerned with material at the level of this publication construct 
the real numbers from more fundamental concepts. In fact it is usual to con- 
struct the real numbers from the rational numbers (by the use of Dedekind 
cuts), the rational numbers from the natural numbers, and then to relate the 
natural numbers to more fundamental set theoretic concepts. For our purposes, 
however, it is sufficient to consider the real numbers as already given and to 
state their properties as axioms in a precise way. Much of the material in this 
chapter will be familiar to the reader although it is quite possible that he has 
not seen it stated in the form given herein. 

Three groups of axioms are given which compZeteZy characterize the real 
numbers. The first of these, the field axioms, contains all the algebraic proper- 
ties of the real numbers. The second group contains all the order properties 
of the real numbers, that is, those properties which have to do with one number 
being larger than another. As a consequence, these order properties also con- 
tain the concepts of absolute value and distance which are introduced in 
chapters 3 and 6. 

These two groups of axioms and their consequences will be familiar to 
the reader, and we will use any of their consequences that are needed without 
making any explicit mention of how they arise. In fact, these axioms are in- 
cluded principally for comparison with the postulates of a normed linear space 
(introduced in chapter 3), which is a generalization of these groups. On the 
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other hand, the consequences of the third group, which actually consists of a 
single axiom, will probably be much less familiar. For our purposes, this group 
is perhaps the most important of the three. This third axiom refers to the com- 
pleteness properties of the real numbers. It states essentially that there are 
no “gaps” in the real numbers. 

I. Field Axioms: With any  two real numbers, a and b, the two operations 
+ and * each associate unique real numbers, denoted by a+ b and a - b, respec- 
tively, in such a way that, if a ,  b, e, etc., are real numbers, the following axioms 
hold: 
Addition axioms: 

( A l )  a + b = b + a  
( A 2 )  
( A 3 )  
( A 4 )  

a+(b+c)  = ( a +  b )  + e  
There is a number 0 such that f o r  every real number a ,  a+ O =  a. 
For every real number a there is a real number denoted by - a  

such that a + ( - a )  = 0. 
Multiplication axioms: 

( M l )  
( M 2 )  

( M 3 )  a . b = b . a  
( M 4 )  

a - ( b  * c )  = ( a  - b )  * c 
There is a number 1 such that 1 # 0 and,  for  every real number 

a ,  1 * a=a .  

For every real number a diferent from zero there is a number 
a-l such that a * a-1 = 1. 

Distributive axiom: 
( D l )  a .  ( b + c ) = ( a - b ) + ( a - c )  

11. Order Axioms: There is a subset 9’ of the real numbers called the 
positive numbers such that if a and b are any numbers the following are true: 

( 0 1 )  For every real number a at least one of the following must be true: 
a=.; a E 9’; or-a E 9’. 

(02) a E 9’ implies - a  $9’. 
(03)  a ,  b E 9’ implies a+ b E 9’. 
( 0 4 )  a ,  b E 9’ implies a * b E 9’. 
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These axioms actually define the set 9 of positive  number^.^ However, 
they are entirely equivalent to defining the concept “larger than” denoted by 
the symbol >, for we need only require, for any two real numbers 

a + ( - b )  E 9 

and the symbol > will be the same one with which the reader is already familiar. 
For example, axiom ( 0 1 )  is equivalent to the fact that for any two numbers 
a and b either a > b or b > a or a = b must hold. To see this, replace a + (- b )  
in axiom (01).  The symbol < is defined by 

and the symbol b is defined by 

Before giving the completeness axiom we need the following definitions. 

a < b if and only if b > a 

a b  b if and onlyif a >  b or a=b  

Definition 2.1: A set E of real numbers is said to be bounded above 
if there exists a real number p such that x d p for  every x E E ,  and any number 
p with this property is said to be an upper bound of E. A set E of real numbers 
is said to be bounded below if there exists a real number p such that x 3 p 
for  every x E E ,  and any  number p with this property is said to be a lower 
bound of E. 

Definition 2.2: If p is an  upper bound of a set E ,  then p is said to be 
the least upper bound of E if no real number which is less than p is a n  upper 
bound of E. If p is a lower bound of a set E ,  p is said to be the greatest lower 
bound of E if no real number which is larger than p is a lower bound of E. 

Clearly, there cannot be two least upper bounds of a given set: if p and q 
were two least upper bounds of E such that p # q then either p < q ,  in which 
case p is not an upper bound of E ,  or q < p ,  in which case q is not. Hence, we 
are justified in saying “the” least upper bound in Definition 2.2. With these 
definitions we can now introduce the completeness axiom. 

The absolute value la1 of a number a is defined by 
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111. Completeness Axiom: Every nonempty set of real numbers which 
is bounded above has a least upper bound. 

It is not obvious that this axiom is equivalent to stating that there are no 
“gaps” in the real numbers. The demonstration of this fact, however, would 
lead too far into the foundations of number theory. 

The terms supremum and infimum are used interchangeably with the terms 
least upper bound Oub) and greatest lower bound (glb), respectively. The least 
upper bound of a set E is sometimes denoted by lub E and sometimes by supE. 
Similarly, the greatest lower bound of E is sometimes denoted by glb E and 
sometimes by inf E.  It is also common to write lub x or sup x for lub E and glb x 

x E E  x E E x E  E 
or inf x for glb E. If the set E is defined by a propositional scheme P ( x ) ,  the 

notations lub (x I P ( x ) )  or sup (x I P ( x ) )  or even lub x or sup x are used for lub E ,  
P ( x )  P ( x )  

with a similar convention of course for glb E. If the propositional scheme 
P ( x )  or the set E is understood from the context, we sometimes write lub x or 
sup x or glb x or inf x with the obvious meaning. It is clear from Definition 2.2 
and the familiar properties of the real numbers that 

glb x=- lub ( -x) 
x E E  x E E  

lub x=-glb ( -.) 
x E E  x E E  

These identities are often useful in transforming s 
premum into statements about the infimum. 

(2- 1 a) 

(2- 1 b) 

3tements about the su- 

Clearly, if any set E contains a largest member y ,  then by definition y is 
an upper bound of E.  But it must also be true that y= lub E for, if x is any real 
number such that x < y ,  then the element y of E is larger than x and so x is 
not an upper bound of E. On the other hand, if any upper bound of E ,  say p ,  
belongs to E ,  then p is both the largest member of E and the least upper bound 
of E. When lub E E E or glb E E E ,  we shall sometimes write max E in place 
of lub E or min E in place of glb E .  

Clearly, every nonempty finite set of real numbers, say (xl, xz, . . ., xn}, 
has a largest element xj and a smallest element xi. Hence, xj=lub {xl, . . . , x,} 
and x1 = glb {xl, . . . , xn}. It is also true that every nonempty subset of the posi- 
tive integers has a smallest element. It is easy to see that, ?E C D and the least 
bound y of D exists, lub E d lub D because every x E E is also contained in D 
and hence x < y for every x E E. Therefore, y is an upper bound of E and so 
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cannot be less than lub E. These very simple properties of the infimum and 
supremum find many applications in the following chapters. 

We shall take for granted the facts that the integers and the rational num- 
bers are subsets of the real numbers and that for any real number p there is an 
integer n such that n >p .  Actually, this last statement can easily be proved 
from the completeness axiom and the fact that, for every integer m ,  m+ 1 is 
an integer which is larger than m, but we shall not bother to do so here. While it 
is also quite easy to prove from these facts that the following statement is true, 
for our purposes it will be sufficient to merely list it as an axiom. 

Axiom of Archimedes: Between any  two real numbers there is a rational 
number. 

This means that if p and q are any real numbers and, say for definiteness, 
p < q, we can find a rational number T- such that p < r < q. 

One of the properties of the real numbers is that for every real number p 
there is a real number q such that q > p ;  that is, there is no largest (and no 
smallest) real number. For many purposes, however, it is convenient to be 
able to talk about a largest and smallest number. This can be done if the set 
of real numbers is enlarged in the manner indicated in the following definition. 

Definition 2.3: The extended real number system is defined to be the 
and - a set which consists of all the real numbers plus the two symbols + 

which, f o r  every real number p ,  have the following properties: 

(1) --Oo<p<+w 

(2) p +  (+a) =+a, p +  (-a) =-a 

(3)  p .  
P > O  

-a P < O  

(4) +y=-&=o P P  
- 

The operation (+a) + (-a) is not defined. We shall also not define 
0 (+ a) and 0 - (-a). However, sometimes the convention 0 - (+ a) = 0 is 
adopted, particularly in the theory of integration. 
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The extended real numbers have many of the algebraic properties of the 
real numbers especially if the arbitrary convention 0 * (+ m) = 0 is adopted. 
A notable exception is that there is no extended real number p such that 
p +  (+ m) =O. Also, when we are dealing with the extended real numbers we 
can not conclude from the fact that a+ b= c+ b that a= c. When it is desired 
to make explicit the distinction between the real numbers and the extended real 
numbers, the former will be termedfinite. 

with their order properties 
(i.e., + co is larger than any real number and - ~0 is smaller) provides two num- 
bers which are upper and lower bounds of every set. The following definition 
uses this fact to eliminate the restriction “bounded above” in the complete- 
ness axiom. 

The introduction of the symbols + ~0 and - 

Definition 2.4: If E is a nonempty set of extended real numbers and 8, 
for  every finite number y, there is a p of E such that p > y ,  then the least upper 
bound of E ,  lub E ,  is defined to be +a. A similar convention is adopted for  the 
glb E.  If E = { + m } ,  we define glb E to be +-, and i f E = ( - - - } ,  we define 
lub E to be --. 
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CHAPTER 3 

Vector Spaces 
A favorite occupation of the nineteenth century algebraist was the gen- 

eralization of quadratic and bilinear forms from three to any finite number of 
variables. The algebra which occurred as a consequence of this was soon inter- 
preted as the geometry of hyperquadratics in n-dimensional space. With this 
interpretation many of the familiar problems in three-dimensional space sug- 
gested very obvious things to do in n-dimensional Euclidean space. 

Around the turn of the century the work begun by Cantor and carried on 
principally by Frhchet, which we shall discuss in somewhat more detail in 
chapter 6, led to the concept of a space as being any set of points of unspecified 
nature subject to certain postulates. Today, just about all the research in 
abstract mathematics is concerned with studying one type of space or another. 
The postulates of the spaces that are studied are usually designed to mirror 
those properties of the real numbers or of the real functions of a real variable 
which lead to useful results when taken over into this more general setting. 
As already mentioned in the preceding chapter, the Field Axioms I contain 
all the algebraic properties of the real numbers and the Order Axioms I1 con- 
tain the concept of absolute value. 

In this chapter, we shall first define a space whose postulates mirror some 
of the field axioms (the linear properties) and as a result a purely algebraic 
space will be obtained; that is, there will be no geometric relation between the 
points of the space. Next, we will add to this space some additional postulates, 
which mirror some of the order axioms and their consequences, in such a way 
that these postulates abstract the notion of absolute value. It will then be 
shown that the abstract spaces obtained in this manner (which are called 
normed linear spaces) not only contain the real numbers as a special case, but 
also the n-dimensional Euclidean space. In 1922 Banach introduced the 
normed linear space with one additional postulate. We shall not deal with 
this postulate, which mirrors the completeness axiom of the real numbers, 
until chapter 9. 
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Our interest here in normed linear spaces is to put them to work to study 
the relation between algebraic operations on the one hand and continuity and 
convergence on the other. 

Apropos of this, we first define vector or linear space (compare with the 
field axioms in chapter 2). 

Definition 3.1: A real (complex) vector space is a set V, whose elements 
are called vectors, together with the set Y of all real (complex) numbers and 
an algebraic operation, called addition, which associates wi.th any two ele- 
ments vl, v2 E V a unique vector, denoted by 4- v2, in such a way that, $v3 
is any vector, the following are true: 

(AI)  vi+v2=V2+vi  (Commutativity) 
(A2) V l +  (vz+v3)= ( V l + V 2 )  + v 3  (Associativity) 
(A3) There exists a vector denoted by 0 and called the zero vector such 

that, for  every v E V, v+O=v (Identity) 
(A4) To each v E V there corresponds a vector denoted by -v such that 

v+ (-v) = o  (Inverse) 

Further an operation, called multiplication, which associates with any 
element v E V and any real (complex) number a,  a unique vector denoted by 
av, is defined in such a way that, for any p E 9, the following axioms hold: 

(Associativity) 
(Identity) 

Finally, the following two distributive laws hold for  any a ,  p, E 9 and any  
v1, vz E v: 

(Distributive) 
(Distributive) 

In the context of vector spaces, the elements of 9 are often referred to 
as scalars. It should be noted that we have made no distinction between the 
notation for the zero vector (sometimes called the origin) and for the number 

a The properties (Al)  through (A4) are those of an Abelian group. Thus, every vector space is an Abelian group with 
respect to the operation +. 
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zero. However, this is common practice since no confusion arises from it. It 
is a direct consequence of axioms (Al) and (A3) that the vector denoted by 0 
is unique: for, suppose 0’ was another such vector; then, v+O‘=v for all 
v E V. In particular, setting v= 0 in this equality shows that 

O + O ’ = O  

But setting v = 0’ in (A3) gives 

0’ + 0 = 0’ 

Now (Al) shows that the left sides of these two equalities are equal; hence, 

o=  0‘ 

We are therefore justified in calling 0 the zero vector. 
It is standard practice, although not really logically consistent, to refer 

to the set V alone in Definition 3.1 as the vector space. After all, we have not 
changed V in any way just because we have in mind certain algebraic operations 
between its members and the members of 9. As a matter of fact, this sort of 
thing is quite common in mathematics and we shall meet it again-for example, 
in the discussion of metric spaces. Following this procedure tends to avoid an 
undesirable awkwardness. 

Another term for vector space is linear space. The two terms will be used 
interchangeably throughout the text. 

It is easily verified that the real numbers satisfy the axioms of a real 
vector space and the complex numbers satisfy the axioms of both real and com- 
plex vector spaces, with the usual method of adding and multiplying complex 
numbers. The following simple theorem is an immediate consequence of 
Definition 3.1. 

Theorem 3.2: Let V be a real (complex) vector space and suppose 

(a) (Cance 1 latio n Law) 

(e) 

V I ,  v2, v3 E V. Then 
vl + v2 = v3 + v2 implies V I  = v3 

The additive inverse is unique and ( - l ) v l  =-v1 
(b) 0 ~ 1 = 0  

Proof: Part (a). This follows immediately from postulates (A2) to (ALE) for, if 
- v2 is added to both members of vl + v 2 =  213 + v2, we get 
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Using (A2) gives 
V l +  (vz+ (-2)) = v 3 +  (v2+ (-212)) 

v1+ 0 = v3 + 0 
Using (A4) gives 

and finally we see from (A3) that 
v1 = v3 

Part (b). This follows from part (a) and from postulates (D2) and (A3) for 
if a is any scalar, then it follows from (D2) that 

and so from (A3) we see that 

Hence, it follows from part (a) that 

0 = Ov1 

Part (c). We first show that the vector - v is unique. Suppose w was another 
additive inverse of v. Then, v + w= 0. It is clear from (Al) that v + ( -u) = 21 + w, 
and then applying (A4) to this shows that (- u) + v= w + v. Thus, the first part 
of this theorem shows that -v= w. 

To complete the proof of part (c) we use propositions (M2) and (D2) and 
part (b) to get 

(- 1 ) V l  +v1= (- l ) V l +  l v 1 =  (-1 + l )v1=0v1= 0 

Since the additive inverse -v1 is unique, we conclude from this that 

Given a vector space V,  it is natural to inquire as to which subsets of V 
are themselves vector spaces. It is clear that not all subsets of V can be made 
into vector spaces by imposing the rules of addition and scalar multiplication 
defined on V. With this in mind we make the following definition. 
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Definition 3.3: Let V be a vector space and let U C V. Suppose that, for  
everyvl,  212 E U, 

a!v* + P V 2 E  u 
for  all scalars a! and p. Then, U is called a linear subspace of V or more 
simply a subspace of V. 

It now follows immediately from Definitions 3.1 and 3.3 that every linear 
subspace of a vector space is a vector space in its own right with the same 
definition of addition and multiplication as in the original space. 

The concept of vector space is a purely algebraic one and therefore (the 
reason for this will become clear in the following) it alone cannot be used to 
discuss continuity and convergence. Roughly speaking we must add some 
structure to it that allows us to introduce the notions of convergence and 
continuity. Apropos of this we now define a “normed” vector space. 

Definition3.4: A real (complex) vector space V is said to be normed if  
there is associated with every element v of V a unique real number llvll which 
has the following properties: 

The number 1 1 ~ 1 1  is called the norm of v. 

It is straightforward but tedious to verify that both the real and complex 
numbers satisfy these axioms with the norm taken to be the absolute value. 
Proposition (N3) is known as the triangle inequality since this is a generaliza- 
tion of that classical concept from Euclidean geometry. This will become clear 
subsequently when we introduce an important and familiar type of normed 
vector space. 

From an elementary standpoint a vector is taken to be a quantity having 
both magnitude and direction. When this outlook is adopted, vectors are usu- 
ally visualized as arrows in a three-dimensional space with the tail of the arrow 
at the origin 0. The direction of the arrow is then the direction of the vector 

la1 denotes the absolute value of the number a. 
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and the length of the arrow represents the magnitude of the vector. The. point 
at the head of the arrow completely specifies the vector. Therefore, one can 
say that this point is the vector. (This is done in the next definition.) In three 
dimensions, a vector r is just a point with coordinates x, y ,  and z. Vectors are 
added by the parallelogram law which amounts to adding the coordinates of 
the points corresponding to the vectors. Thus, if the head of the vector rl is at 
the point xl, y l ,  z1 and the head of the vector r2 is at the point x2, y2, 22, then 
the head of the vector rl + r2 is at the pointxl +x2, yl + y2, z1+ 22. The product 
of the vector r with a real number c is defined to be the vector whose head is 
at the point cx ,  cy,  and cz. The dot product of the two vectors r-1 and r 2  is de- 
fined to be the real number xlx2 + y1y2 + z122. The magnitude of the vector r is 
(x2 + y2 + z2)1/2. In the next definition these geometric concepts are formalized 
by a set of postulates and extended to spaces with an arbitrary number of 
dimensions called Euclidean spaces. 

Definition 3.5: For each positive integer k ,  the k-dimensional Euclidean 
space is the set Rk of all ordered k-tuples of the form 

x=(x1, x2, - - - 7  x k )  

where x1, x2, . . ., xk are real numbers, with the operations of addition and 
scalar multiplication between all the elements of R k  defined as follows: Let 

and 

be any  two members of R k  and let CY be any real number. Put 

and 

I t  is clear that x + y E R“ and a x  E Rk. Y e  call the jirst of these operations 
addition and the second scalar multiplication. V e  further define the zero 
vector or origin of R” (denoted by 0) to be the k-tuple 

O = ( O ,  . . ., 0) (3-3) 

In addition, we associate with any two elements x and y of R k  the real number 
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x * y defined by 

k 

x * y= xiyi 
i= 1 

(3-4) 

and with any element x of Rk  we associate the nonnegative number 1x1 defined by 

If x= ( X I ,  x2, . . ., xk) is any element of Rk ,  we call x a vector or a point 
of Rk and the numbers xl, x2, . . ., xk its coordinates. Relation (3-4) is 
called the inner product. 

W e  shall denote a vector in Rk by using boldface type for  the letter, and 
we shall denote its coordinates by the same letter with subscripts ranging from 
1 to k. 

Now that the Euclidean spaces have been introduced, we still must show 
that these spaces are in fact normed linear spaces. With the definitions of 
addition given by equation (3-1) and of scalar multiplication by equation (3-2) 
and with the zero vector defined by equation (3-3), it is an easy matter (inas- 
much as the real numbers satisfy the associative, distributive, and commuta- 
tive laws) to verify that the postulates (Al) to (A4), (Ml) and (MZ), and (Dl) and 
(D2) of Definition 3.1 are satisfied by the members of Rk. We therefore conclude 
that the k-dimensionalEuclidean space Rk is a real vector space. Before showing 
that in addition Rk is a normed linear space, it is convenient to prove the next 
theorem. 

Theorem 3.6: Suppose that x, y E Rk and tha.t a is a real number. 
Then, 

(a) 1x1 3 . 0  

(4 b x I =  14 1x1 
(4 Ix ‘YI 1x1 IYI 
(e) b+Yl  I4f IYI 

(b) 1x1 = 0 if and only if x= 0 

Proof: Parts (a), (b), and (e) are obvious. To prove part (d) we first note that, 
from the definition of inner product, (x+ y) - z = x  -z+ y - z. Assume neither 
1x1 nor I yI nor x y is zero for otherwise, by part (b), x * y= 0 and the inequality 
is trivial. Now from part (a) we have, for any real number A, 
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Since h is arbitrary, we can set 

and we have 

Hence, 

or 

2 -  1x1' 
IYI' 

h -- 

0 d 21x12-2 - 1% I Ix - yI 
I Yl 

and part (d) is proved. It follows from part (d) that 

[x+y1'= (x+ y) (x+ y) =x * x 

+2X.Y+Y.Y< lXl2+214 IYI+ Iyl2= <IxI+ 134)' 
so that part (e) is proved. 

Comparing parts (a) to (c) and (e) of Theorem 3.6 with (Nl) to (N3) of 
Definition 3.4 now shows that indeed equation (3-5) defines a norm on Rk  
and so makes R k  into a normed linear space. 

We define R1 to be the set of all (finite) real numbers. We have already 
pointed out that R1 is a real normed linear space if we take the norm of any 
element in R1 to be its absolute value. 

It is clear from the definition of the direct product given in chapter 1 that 

R k = R l x R l x .  . . x R 1  
taken k-times 

(3-6) 

It also follows from the discussion at the end of chapter 1 that, for any k >  2, 

(3-7) Rk= Rs X Rk-S 1 S s d k - 1 

For k = 2  and k = 3  the definitions of equations (3-l), (3-2), and (3-4) 
just correspond to our usual concepts of vector addition, multiplication of a 
vector by a scalar, and dot product, respectively. Furthermore, equation 
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(3-5) is the definition of the magnitude of a vector. What has been done here 
is that our usual geometrical concepts of vector addition, etc., have been for- 
malized into a set of algebraic rules or postulates, which was used to define a 
mathematical structure. Looked at in this more abstract setting, the spaces 
R” then become natural generalizations of the three-dimensional Euclidean 
space. 

We remind the reader that a point in the plane can now be represented 
in either of two ways. First, it can be represented as a vector in R 2  -that is, 
as the ordered pair x =  (xl, xz) where x1 and x2 are real numbers. Second, it 
can be represented as the complex number z=x1+ ix2 where i =  G. 

Geometrically speaking, when the real part of z is the same number as 
the first element of the ordered pair x and the imaginary part of z is the same 
number as the second element of the ordered pair x ,  then x and z refer to the 
same geometric point. If y= (y1, yz) and r)  =y1+ iyz, then for any real num- 
bers a and p 

and 

which defines 5. This shows that the complex number 6 represents the same 
point as the vector v, so that it makes no difference which formalism we use 
to carry out these algebraic operations. They are entirely equivalent. It is 
clear from equation (3-5) that IxI=IzI is just the absolute value of the com- 
plex number z in the usual sense. 

Essentially then, for every operation that can be performed in R2,  there 
is an equivalent operation with complex numbers that will yield the same 
result when the complex numbers and the vectors in R2 are identified with 
each other in the manner indicated. So all the results obtained below for 
Euclidean spaces have an immediate counterpart for complex n ~ m b e r s . ~  

We shall denote the real part of a complex number z by 9% z and the 
imaginary part by Av z. The set of all complex numbers is usually denoted 
by C. 

‘In fact, the complex numbers are a field, whereas R2 is only a linear space. This in particular implies that mul- 
tiplication is defined between members of the set of complex numbers. 
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CHAPTER 4 

Functions and Relations 
It appears that the word “function” was first used by Descartes in 1637 

to refer to a positive integral power of some real variable. After a considerable 
period of time, the term was taken up by Leibnitz to refer to any numerical 
quantity connected with a curve. The concept of function was next modified 
by James Bernoulli who regarded it as being any algebraic expression involving 
a single variable. Euler generalized this concept of function to include algebraic 
expressions involving any number of real variables and any expression that 
could be generated from algebraic expressions by the operations of compo- 
sition, quadrature, and forming infinite series. Euler did not realize the full 
implications of this definition, and it was Fourier who demonstrated that 
much more general functions than Euler had thought possible arose as the 
sums of infinite series. Attempts to give a definition which was meaningful 
for this large class of relations led Dirichlet to give a definition of function 
which no longer required that any explicit formula be involved in the definition 
but only required that a rule of correspondence between numbers be given. 
He coined the terms “domain” and “range,” and he was the first to impose 
the restriction that the rule of correspondence assign only a single number 
to each number in the domain of definition ‘of the function. This is essentially 
the concept of function that is used in elementary calculus today. Dirichlet, 
however, still required that a function relate numerical quantities, and he did 
not seem to apply the term function to the rule of correspondence itself. 

With the introduction of set theory into mathematics, the term function 
has come to refer to any rule which associates with an element of a given 
set a single element of another set. Finally, attempts to formalize mathematics 
entirely in terms of set theoretic concepts have led many modern authors to 
define functions in terms of certain sets of ordered pairs. 

Before giving a precise definition of function, let us consider an example 
in which D denotes the set of all books in the NASA Lewis library. Let E be 
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the set of positive integers. Then we can associate a unique member of E with 
each book in D ,  namely, the number of pages which that book contains. This 
scheme defines a function from the set D into the set E. 

Definition 4.1: If D and E are any two sets and there is some scheme 
or rule whereby, with each element X E D ,  there is associated a unique ele- 
ment y E E ,  then this scheme is said to be a function f from D into E. The 
element y E E  that is associated in this way with an  element XED is denoted 
by f(x) and is called the value off at x. The set D is called the domain off. 
The notation f :  D+ E means that f is a function from the set D into the 
set E .  The function f is said to be defined on D. 

The sets D and E appearing in this definition may of course both be the 
same set. We shall sometimes say that f is a function from D to E instead of 
from D into E. 

In various contexts the terms mapping, transformation, and operator 
are used for function. We emphasize the fact that a function must associate 
a single value with each member of its domain. According to Definition 4.1, 
the function f is completely specified only when the rule connectingall the 
elements of a set D with the elements of a set E is given. It is important in 
modern mathematics to think of the entire function f as a single object and 
to always make a distinction between the function f and any one of its values, 

If the domain of a function f is a subset of the direct product of two sets, 
say A and E ,  it is common practice to denote the value off at the point 
( a ,  e )  E A  X E by f ( a ,  e )  instead of by f ( ( a ,  e)). The function f is usually 
referred to as a function of two variables. Hence a function of two real variables 
is a function whose domain is a subset of R2 = R1 X R1. More generally a func- 
tion of n variables is one whose domain is a subset of the direct product of n 
sets, say A I ,  . . ., A,,, and its value a point ( a l ,  . . ., an> E >r(c Ai is denoted 
by.f(ai, . . ., an) .  

Iff: D -+ E (sometimes read “f maps D into E”), the set { ( x , , f ( x )  ) Jx E D }  
is called the graph of the functionf. In modern writing a function is frequently 
defined to be its graph. For our purposes it makes no difference which of 
these concepts is used as the definition of function. 

It is not consistent with Definition 4.1 to define a function f from the set 
of all real numbers to the set of all real numbers by the scheme 

say fb>. 

i =  1 

f ( x )  = tan-l x (for every real number x) (4-1) 
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the reason being that tan-’ associates more than one real number with each 
real number x and therefore does not lead to an unambiguous scheme. It is, 
however, consistent with Definition 4.1 to define a function f from the set of 
all real numbers to the set of all numbers lying between -E  and ?r by equation 
( 6 1 ) .  It is also not in accord with Definition 4.1 to define a function f from 
the set of all real numbers to the set of all real or even extended real numbers 
by the scheme 

2 2 

(4-24 
1 

f(x) =; (for every real number x) 

forf(0) is not defined by equation ( 6 2 a ) S  and a function must be defined at 
every point of its domain. A function into the extended real numbers is, how- 
ever, defined in a proper way if we replace equation ( 6 2 a )  by 

for every real number x # 0 
f(x> = 

This is contrary to the older usages of the term function which allowed equa- 
tion ( 6 2 a )  to define a function that was said to have an infinite discontinuity 
at x=O. 

For any two sets A and E ,  the functionf: A X E+ A defined by 

f( (x, y)) = x  for all (x, y) EA x E 

is sometimes called the first projection in A X E .  Similarly, the function 
g : A  XE- E defined by 

is sometimes called the second projection in A X E .  

according to our definition,f and g are the same function if and only if 
Suppose D and E are any two sets and f : D +  E and g:D+ E. Then, 

f(x) = g ( x )  for every X E D  

In this case we writefzg. 

an x.” 
In the following definition, the notation 3 x is used to mean “there exists 

“This  of course follows from the fact that division by zero is not defined even in the extended number system. 
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Definition 4.2: I f f  :D+ E and A is any subset of D, the image of A 
under f is defined to be the set f (A) ,  which consists of all y € E  such that 
y= f (x) for  some x E A. More formally, the image of A is the set 

f (A)  = { y € E l ( 3 x € A )  fo r  which y= f ( x ) }  

The set f ( D )  is called the range o f f .  It is clear that, in  general, f ( D )  E E. 
I f  it happens that f ( D )  = E ,  then f is said to map D onto E and the function f 
is said to be a surjective function from D to E.9 

In other words, a function f : D +  E is surjective, or onto, if and only if, 
for every y E E ,  there is some X E D  such that y = f ( x ) .  Notice that the state- 
ment “fmaps D onto E” is more specific than the statement (cf., Definition 
4.1) ‘y maps D into E.” The concept of image is illustrated in figure 6 1 .  

FIGURE 4-l.--Image of a set of real numbers under a real valued function. 

If D and E are both sets with a finite number of elements, it is obvious 
that if E has more elements than D, the mapping f : D 4 E cannot be surjective. 
For example, the function g : A +  G whereA= { a ,  b,  c} and G =  {1,2} defined 
by 

The property of being surjective is not a property off alone but a property off and E. 
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G G 
a. 

1 . 1  1. 

C *  2 .  

is surjective, whereas the function h : G + A given by 

e a  

*e b 

*. c 

h(1) = b 
h(2) = c  

is not surjective. These two functions are illustrated in figures 4-2 (a) and (b). 

A A 

(a) 
(a) g : A  + G .  

(b) 

(b) h : G + A .  

FIGURE 4-2. -Schematic representations of g and h. 

Clearly any function f : D + E may be considered as being a surjective 
function from D to f ( D ) .  Also if A1 and A B  are any two subsets of the domain 
D off, then A1 C A2 implies f ( A 1 )  C f ( A z ) .  Finally it is an immediate conse- 
quence of Definition 4.2 that f(0) = 0.10 

The functionffrom the set of all real numbers to the set of all real numbers 
defined by 

f(x) = x3 for all real numbers x 

is surjective. However, the function g from the set of all real numbers into the 
set of all real numbers defined by 

lo If f : D + E ,  A C D, and E is a subset of the real or extended real numbers, it is common practice to write 
sup f ( x )  and inf f ( x )  in place of supf(A)  and inff(A),  respectively. 
* E A  x E A  
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g ( x )  = x 2  for all real numbers x 

is not surjective because, given any negative number y ,  there is no real number 
x for which y = x 2 .  

Definition 4.3: For any  two sets D and E ,  the mapping induced by 
a function f : D --j E is deJined to be the function! from the collection PD of 
all subsets of D into the collection PE of all subsets of E such that, for  
each subset A E PD, the value of the function / a t  A is f ( A ) ,  the image of A 
under f. l1 

The symbol f is also used for the induced mapping {and it is usually 
necessary to infer from the context which function f refers to. It is clear, from 
Definition 4.2, that the mapping induced by a function f : D --j E is surjective 
if and only if its range is the collection of all subsets of E. The following ex- 
ample serves to illustrate some of these concepts. 

Let D = { a ,  b} and E = { 1,2) .  The function f : D + E defined by 

1 fo rx=a  

1 fo rx=b  
f (4 = 

is not surjective. This function is illustrated in figure P-3. The subsets of D are 

The values of the induced mapping are 

and this mapping, like the function f, is also not surjective because its range 
does not include the subsets (2) and (1, 2) of E. 

The collections 9’1) and 9’E are called the power sets of D and E, respectively. 
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FIGURE 4-3. -Schematic representation off: { a, b} + { 1 ,  2). 

Definition 4;P:  I f f :  D += E ,  and A i s  a n y  subse t  o f  E ,  the inverse  
i m a g e  of A under f is defined to be the set f - ' ( A ) ,  which consists of all points 
x E D for  which f(x) E A. In symbols, the inverse image is the set 

f - ' ( A ) = { x  E D I f ( x )  E A )  

I f  the inverse image under f of every one element subset of E contains at most one 
element of D, then f is said to be injective or f is said to be a one-to-one map- 
p i n g f r o m  D to E. 

f(x) 

A 

r Graph of f 

FIGURE 4-4. -Inverse image of a set of real numbers under a real valued function. 
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The concept of inverse image is illustrated in figure 4-4. 
Clearly, if a function f :  D+E is injective, there cannot be two distinct 

points of D, say x1 and x2, such that f(xI)=f(xz), for otherwise the inverse 
image underfof the one element set { y }  where y=f(xl) =f(xz)  would contain 
more than one element, namely, xl and xz. On the other hand, if for any two 
points of D, say x1 and xz, x1 # xz implies f (x1) # f (xz), then the inverse image 
of any one element subset { y }  of E can have at most one point for, if f-l({y}) 
= {XI, a} and x1 # xz, then we would have y= f (XI) and y= f (xz) which is 
impossible since f(x1) #f(xZ). Hence, we conclude that a function f: D + E 
is injective if and only if, for  any  XI, x2 E D, x1 Z xz implies f(x1) # f (x2) .  

We can express this last concept in still another way. To this end, suppose 
that p and q are two propositions (recall that propositions are either true or 
false but not both). It was shown in chapter 1 (see p. 2) that the two statements 
“whenever the proposition p is true, then the proposition q must also be true’’ 
and “whenever q is false, p must also be false” mean the same thing. They are 
known as contrapositives of one another. Now, we saw that a function f is injec- 
tive if and only if, for any two points x1, x2 in its domain, x1 # xz implies 
f (XI) # f (xz). This statement can be replaced by its contrapositive and we may 
say that f is injective if and only iff(x1) =f (xz) implies X ~ = = X Z  for  any XI, xz 
in the domain o f f .  Situations often occur in the proofs of theorems when it 
is easier to prove the contrapositive of a statement rather than the statement 
itself. 

We mention in passing that, as in the case of induced mappings, the 
inverse images of the various subsets of E under a mappingfare the values of 
a function from the collection of all subsets of E into the collection of subsets 
of D. 

We return to the last example in which D = { a ,  b )  , E = { 1 ,2 ) ,  andf: D + E 
is defined by 

for x= a 
1 f o r x = b  

The inverse images under f of the subsets of E are 

The function f is not injective since f-l({ 1)) contains more than one element 
of D. Alsof(a)=f(b), but a # b. 
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If D and E are any two sets, f: D+ E ,  and HI and H2 are any two subsets 
of E, then clearly H1 C H2 implies f-l(H1) C f-l(H2). 

Iff :D+ E and y E E ,  it is common practice to write f-'(y) in place of 
f-l({y}). We shall avoid this convention here since it can.easily be confused 
with the inverse function which is defined subsequently. 

Before giving this definition, however, it is helpful to establish the follow- 
ing properties of injective functions. 

Iff: D+ E is injective, then 
(a) For each y E f (D) , there is one and only one x E D such that y= f (x). 

This is an immediate consequence of the facts that f (D) is the range off and 
that f is injective. 

(b) For every x E D, there is a y E f (D) such that y= f (x) . This is? a conse- 
quence of the fact that f (x) E f (D) for every x E D. 

(e) x1 =x2 implies y1= y2 if y1= f (x1) and y2 = f (xz) . This is a consequence 
of the fact that the value of a function at a given point of its domain is unique. 
It follows from (a) that each element y E f ( D )  is uniquely expressible in the 
form f (x) for exactly one element x of D. We can therefore define in a natural 
way a mapping from f (D) into D by taking x as the value of this mapping at the 
point y=f(x) E f ( D ) .  It follows from (b) that this mapping is onto D and (e) 
shows that this mapping is injective. In view of these remarks we make the 
following definition. 

Definition 4.5: Iff: D+ E and f is injective, the function f-' : f (D) + D 
which associates, with each y E f ( D )  , the element x E D such that y= f (x) is 
called the inverse mapping or simply the inverse o f f .  If a mapping f is 
injective, its inverse is said to exist. 

I The relation between the mapping f and f-' is suggested by figure 4r5. 
Notice that the domain of f - I  is the range off and the range of f-' is the 
domain off. Also notice from the definition that if the inverse of a given map- 
ping exists, then it is unique. In addition, since the inverse mapping is injective 
and since x= f - l  (y) implies that y= f (x) , it is clear that the inverse mapping 
of f-'(i.e., (f-')-') is just f. 

Since the inverse image of a set and the inverse mapping are both denoted 
by f-l, it is sometimes necessary to exercise some caution so that these two 
meanings are not confused. 
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FIGURE 4-5. -Relation between an injective function and its inverse. 

Again consider the sets D =  { a ,  b }  and E= { 1, 2}. This time define the 
function g : D + E by 

This function is evidently both surjective and injective so the inverse function 
g-1 exists and its domain g ( D )  is equal to E. Thus, we have 

g-l(l)= b 
g-' (2) = a 

This function is shown in figure 4-6. 
It is clear that, if D and E are any sets, each containing only a finite number 

of elements, and D contains fewer elements than E ,  no surjective function from 
D to E can be defined whereas, if D contains a larger number of elements than 
E ,  no injective function from D to E can be defined. 

Definition 4.6: A function which is both surjective and injective is said 
to be bijective or a bijection. 
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(b) 

(b) g-' : (1,  2}+ { a ,  b}. 

FIGURE 4-6. -Schematic representations of functions g and g-1. 

When a function f : D + E is a bijection, the following are true: 
(a) The fact thatf is  a function implies that a single element of E is asso- 

ciated with each element of D. 
(b) The fact that f is surjective implies that every element of E is asso- 

ciated with at least one element of D. 
(c) The fact that f is injective implies that every element of E is asso- 

ciated with at most one element of D. 
Thus, every element of E is associated with exactly one element of D and there 
is no element of D which is not associated with some element of E. 

If D is any set, the mapping i : D+ D which associates each element of 
D with itself is called the identity map o f D .  This mapping is clearly a bijection. 

Clearly iff  : D+ E is a bijection, its inverse mapping f-' is a bijection 
from E to D. Consider, for example, the function g : D+ E where D and E are 
subsets of the real numbers, and g is defined by 

g ( x )  = x 2  for all x E D 

(a) If D and E are both taken to be the set of all nonnegative numbers, 
then g is a bijection and its inverse g-l is defined on E by 

(b) If D is taken to be the set of all nonnegative numbers and E is taken to 
be the set of all real numbers, then g is injective but not surjective. The domain 
of the inverse is still the set of all nonnegative numbers. 

(c) If D is taken to be the set of all real numbers and E is taken to be the 
set of all real numbers, then g is neither surjective nor injective. Its inverse 
does not exist. 
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...................................... 

f-'(f(A)) 3 A 

f ( A i  U Az) = f ( A i )  U f(Ar) 

f ( ~ ~  n A ~ )  c f ( ~ , )  n m z )  

There are a number of relations connecting the images of sets under 
mappings and the binary set operations. A few of the more common ones are 
listed in table 4-1. 

f - ' ( H ' )  = ( f - i ( H ) ) r  

f ( f - ' ( H ) )  c H 

f - ' ( H ,  U H z ) = f - ' ( H i )  U f - ' ( H z )  

f - i ( ~ ~  n ~ ~ ) = f - i ( ~ ~ )  n f - i w  

In order to demonstrate the procedures involved in obtaining the relations 
in table &I, we shall prove thatf(f-l(H)) C H .  To this end, let 

A =f-'(H) = {x E D I f ( x )  E H }  

Then 
f ( f - ' ( H ) ) = f ( A ) = { y  E E ( ( 7 f x  E A )  forwhichy=f(x)} 

Now, if y is any point off(f-'(H)), this implies y = f ( x )  for some x E A .  But 
x E A means thatf(x) E H ;  hence y E H .  Since y was any point off(f-I(H)), 
we conclude that f(f-'(H)) C H .  

A relation typical of those listed in the third and fourth rows is proved in a 
more general setting in chapter 5. The other relations listed in the table are 
obtained in a more or less similar fashion. 

To see why the equality sign does not hold for the entry in the fourth row, 
first column, suppose A1 and A2 are disjoint sets. Thenf(A1 n A,)=@.  On the 
other hand, if f is not injective, there are points x1 # x2 of D such that 
f ( x 1 )  = f ( x ~ ) .  Suppose that A1 = {xl} and Az= {xz}; then, f({xl} n {xp}) =@ 
but f(A1) n f(Az) Z 0  since f(x1) E f ( A 1 )  fl f(A2). The next theorem shows 
when the inclusion signs ( C and 3 ) in the relations listed in the second row 
of table P-I can be replaced by equal signs. 
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Theorem 4.7: Let f: D+ E. 
(a) f is surjective i f  and only iff(f-'(H))= H for  every set H C E. 
(b) f is injective i f  and only i f  f -l ( f ( A ) ) = A  for  every set A C D. 

Proof: Part (a). Suppose f is surjective. Put 

Let y be any point of H. Sincefis surjective, y = f ( x )  for some x E D but A is the 
set of all x for whichf(x) E H. Hence x E A .  Nowf(A)= { y  E El (3x E A )  
for which y = f ( x ) }  and this shows that y = f ( x )  E f ( A ) .  Since y was any point 
of H we conclude that H C f(A)=f(f-l(H)). Combining this with the relation 
given in the second row, second column of table @I shows thatf(f-l(H))= H. 

Conversely, suppose that f(f-'(H)) =H for every H C E. Let y be any 
point of E. Then f(f-l({y})) = {y}. Since f(@) = @, we conclude that f-l({y}) 
# 0. Hence there exists at least one x E D such that y = f ( x ) ;  that is, y E f(D). 
Since y was any point of E ,  we conclude that E C f ( D )  . Hence, E = f ( D )  and 
so f is surjective. 

Part (b). Suppose f is injective. Set 

H=f(A)= { y  E El (ax E A )  for which y = f ( x ) }  

Then 

f-'(f(A))=f-l(H)={x E D I f ( x )  E H} 

Let x1 be any member off-l(f(A)). Then x1 E f-l(H). Hence,f(xl) E H and, 
because H =f(A) , there exists an x2 E A such thatf(x1) =f(x2). It now follows, 
since f is injective, that x1= x2. Since x1 was any point off-l ( f ( A ) )  , this shows 
that f- '(f(A)) C A .  Combining this with the entry in the first column, second 
row of table 6 1  shows thatf-I(f(A))=A. 

Conversely, suppose f- ' (f(A))=A for every A C D and suppose for any 
two points x1, x2 E A that f(xl)=f(xz). Now f(x2) E f ( { x p } )  and hence 
f(x1) E f( {xz}). Since 

we see that x1 E f - l  (f{x2})) and by assumption,f-l (f( {a}))= {XZ} - Hence, 
x1=x2 and this shows thatfis  injective. 

355-525 0-70-4 
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Theorem 4.8: Let f : D +E. 
(a) I f f  is injective, then the mapping induced by f is an injective function 

from the collection of all subsets of D to the collection of all subsets of E. 
(b) I f f  is surjective, then the mapping induced by f is a surjective function 

from the collection of all subsets of D to the collection of all subsets of E .  
(e) I f f  is bijective, then the mapping induced by f is a bijective function 

from the collection of all subsets of D to the collection of all subsets of E. 
Proof: Part (a). Suppose A1 and Az are subsets of D such that f ( A , )  = f ( A z ) .  
We need only show that this implies thatA1 =A2 to prove that the induced map- 
ping is injective. Hence suppose f is injective. If x is any point of AI,  then 
f ( x )  E f (AI)  = f ( A z )  { f(y) (y E Az).  This shows that for some y E Az,  
f ( x )  = f ( y )  and since f is injective this shows that A1 C Az. The reverse 
inclusion is obtained in exactly the same way by picking a point inAz. Hence 

Part (b). Suppose now that f is surjective. We must show that the mapping 
induced by f is onto the collection of all subsets of E. That is, we must show 
that, if H is a subset of E ,  then H = f ( A )  for some subset A of D. Sincefis sur- 
jective, Theorem 4.7(a) shows that this requirement is met if we take A to be 
the set f - ' ( H ) .  

A1 = Az. 

Part (e). This follows immediately from (a) and (b). 
Definition 4.9: I f f  : D --j E and A C D ,  a function g : A  +E is said to 

be the restriction off to A and f is said to be an  extension of g to D if for  
every x E A ,  g(x )=f (x ) .  

It is clear that the restriction of a function to a given set is unique, but 
there is no natural way of defining a unique extension of a given function. 
We see that if H is any subset of A and g is the restriction off to H ,  then 
f ( H )  = g ( H ) .  Clearly the restriction of any injective function is also injective. 
If A is a nonempty subset of a set D ,  the restriction to A of the identity map of D 
is denoted by j ,  and is called the natural injection of A into D. It is not hard 
to see for any E C D that 

j , l(E) = E  n A ( 6 3 )  

Definition 4.10: Suppose that there is a scheme whereby some of the 
elements of a given set A are related in some manner to other elements of A .  
I f  a n  element x E A  is related to an  element y E A by this scheme, we write 
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x - y. In addition, suppose this relation between the elements of A ,  which is 
also denoted by -, has the following properties: 

(a) 
(b) 
(e) 

Then - is called a n  equivalence relation in A .  
For example, suppose the set A is a family (of people). Then “is the same 

age as” is a relation between the members of this set which is an equivalence 
relation. As another example, consider the set of all triangles in a plane. Then 
each of the following is an equivalence relation in this set: 

For every x E A ,  x - x. 
x - y implies y - x. 
x - y and y - z implies x - z. 

is similar to 
is congruent to 
has the same area as 
has the same perimeter as 

A relation which satisfies (a) is called reflexive, one which satisfies (b) is 
called symmetric, and one which satisfies (e) is called transitive. Hence, 
equivalence relations are sometimes called SRT relations. 

If A ,  D, and E are sets and we are given two functions f : A +  D and 
g : D+ E ,  it is possible to define in a natural way a mapping from A into E in 
terms of these two functions. For if x is any point of A , f ( x )  is a uniquely de- 
termined point of D. Since g is defined on D, g( f (x) ) is a uniquely determined 
point of E .  Thus the scheme which associates with each x E A the unique 
element g(  f (x) ) of E is a function from A into Et. Apropos of these remarks 
we make the following definition. 

Definition 4.11: If A ,  D ,  and E are sets, f : A +  D and g :  D+ E ,  the 
function h : A +  E defined by 

h ( x )  = g ( f  (x)) for all x E A 

is called the composition of g and f and is denoted by  g of. 

be defined if the range off belongs to the domain of g. 

E = { p ,  q } ,  and let f : A + D and g : D+ E be defined, respectively, by 

It should be clear that the composition of two mappings g andf can only 

In order to illustrate the definition, let A =  {w, x, y ,  z ) ,  D= (1, 2, 3}, and 
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and 
g(U = 4 

g ( 2 )  = P 

g(3) = 4 

The composition g o f  is obtained by the following calculation: 

We have in fact already encountered an example of the composition of 
two mappings, for Definition 4.5 shows that i f f :  D+ E andf-l exists, then 

f-'(f(x)) = x  for everyx E D 

The definitions of composition and of equality of two mappings now show that 

where i is the identity map of D. 
Iff:  D+ E ,  A is a nonempty subset of D and j ,  is the natural injection of 

A into D, then f 0 j, is the restriction of f to A .  
1ff:A + D, g : D + E ,  and h=gof ,  it is clear that h ( A ) = g C f ( A ) )  so that, 

in particular, if g and f are both surjective, f ( A ) = D  and g ( D ) = E .  Hence 
h ( A ) = E ,  which shows that h is also surjective. 

If g andf are both injective, then, for any x1, x2 E A ,  x1Z x2 implies 
f ( x 1 )  # f ( x z )  ; since g is also injective, this in turn implies gCf(x1)) # g( f ( x2 ) ) ,  
that is, h(x1) # h ( x z ) ,  which shows that h is also injective. Thus, i f fandg are 
bijections, then h is a bijection from A to E .  

Definition 4.12: I f  A and D are two nonempty sets and there exists a 
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bijective mapping f f rom A to D ,  then it is said that A and D can be put into 
one-to-one correspondence or A and D are said to be similar or to have 
the same cardinal number. This is denoted by A - D. 

We recall that the identity map of A is a bijection from A to A .  Also iff is a 
bijection from A to D, then f - l  is a bijection from D to A .  Iff is a bijection from 
A to D and g is a bijection from D to E ,  then h=gof is  a bijection from A to E. 
These remarks show that one-to-one correspondence is an equivalence relation. 
Apropos of this discussion we make the following definition. 

Definition 4.13: A nonempty set A is said to be finite i f ,  f o r  some integer 
n, A - { 1 ,  2,  . . ., n] ;  otherwise, A is called infinite. The empty set is also 
considered finite. 

It is clear (see remarks preceding Definition 4.6) that any two sets with a 
finite number of elements can be put in a one-to-one correspondence if and only 
if they have the same number of elements. We cannot, however, attach any 
meaning to the statement that two infinite sets have the same number of ele- 
ments but the concept of one-to-one correspondence has meaning for infinite 
sets as well as finite sets. This is therefore taken as the appropriate generaliza- 
tion of the concept of number of elements in a set. 

Definition 4.14: Let J be the set of all positive integers. A nonempty set 
A is said to be countable i f A  is eitherfinite or A - J .  If a set is not countable, 
it is said to be uncountable. Countable sets are alternatively called enumer- 
able or denumerable. 

For example, the set 2 consisting of all the integers is countable. To see 
this let f : J -j 2 be the mapping defined for each n E J by 

n even 

We shall show that f is a bijection. It is clear that f is one-to-one. To see that it 
is surjective (or onto), let i be any integer. If i is positive, we can always find a 
positive even integer n such that n= 2i and, for this n, f ( n )  = i. If i is negative 
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or zero, we can always find a positive odd integer n such that n = 1 - 2i and, for 
this n,  f ( n ) =  i. 

Clearly no finite set can possibly be put into one-to-one correspondence 
with one of its proper subsets. We have just shown that this is possible, at least 
for some infinite sets. As it turns out, every infinite set can be put into one-to-one 
correspondence with at least one of its proper subsets. 

Definition 4.15: A function f from the set J of positive integers into a 
set X is called a sequence in X or, more simply, a sequence. The range off 
is called the range of the sequence. The values o f f  are called the terms of the 
sequence. 

The values of any function defined on the set J have a certain order im- 
parted to them as a consequence of the ordering of the set J by the symbols 
<, >, and = . A function f defined on J is called a sequence only when the em- 
phasis is to be on the values of f and this ordering. Thus, conceptually, a 
sequence is usually thought of as a set whose members are listed in some 
definite order. In line with this idea, it is customary to denote the terms of the 
sequence by X, (of course, any letter may be used in place of x) instead of 
by f ( n )  for each n E J .  Since the emphasis is to be on the values of the func- 
tion f ,  it is also customary to denote the sequence f by {x,}, which is an abbrevi- 
ation for the range off, {xnln E I } .  Sometimes the even more intuitive nota- 
tion x1, x2, . . . is used to denote the sequence. This latter notation em- 
phasizes the ordering of the terms of the sequence. Sometimes the term se- 
quence is applied to a function whose domain is a finite set of consecutive 
integers. This is not done here! However, occasionally a sequence will be 
defined as a function on the set of nonnegative integers instead of on J .  Thus, 
we only call a function a sequence if its domain is J or the set of nonnegative 
integers. Since the function f need not be injective, it is clear that the range of 
a sequence may  be afinite set, or it may even consist of a single point. 

The proof of the next theorem is based on a principle called mathematical 
induction. This principle can be stated as follows: 

Suppose that with each n E J there is associated some proposition S n .  

Suppose further that st is true and that f o r  any  positive integer k ,  s k + t  is true 
whenever S k  is. Then we can conclude that S n  is true fo r  every n E J .  

We can justify this principle by using the simple fact (introduced in 
chapter 2) that every nonempty subset of the positive integers contains a 
smallest member. We shall not, however, stop to do so here. 
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As a simple illustration of how a proof by induction can be carried out, let 
us verify that the formula 

2+4+. . .+2n=n(n+1) (4-4) 

is true for every n E J .  (The term on the left denotes the formal sum of n 
terms.) To this end, for each n E J ,  let S n  be the proposition that formula (4-4) 
is correct. Clearly s1 is true since 2 = 1 (1 + 1). Now suppose S k  is true. Then 
adding 2 ( k +  1) to both sides of (4-4) with n= k we see 

2+4+. . . + 2 k + 2 ( k + l )  = k ( k +  1) + 2 ( k + l )  = ( k + l )  [ ( k + l )  + 11 
and so we see that for every positive integer k ,  Sk+l is true whenever S k  is. 
The principle of mathematical induction now tells us that formula (4-4) is 
true for every n E J .  

The principle of mathematical induction can also be used to define func- 
tions on J .  This procedure is known as a recursive definition of the function, 
and it tells us that we can define a function f by giving f (1) together with a 
procedure for calculating f ( k +  1) from f(k) for every k E J .  To see how this 
type of definition is justified by the principle of mathematical induction, we 
need only let, for each n E J ,  sn be the proposition that f ( n )  is defined by this 
procedure. Then clearly SI is true and S k + l  is true whenever S k  is. Hence, the 
principle of mathematical induction tells us that sn is true for every n E J or 
that f is defined on J .  

Proof: In order to prove the theorem we shall construct a bijection f from J to 
I .  To this end we define for each nonnegative integer k the set Jk by 

Theorem 4.16: I f  I is an infinite subset of J ,  then J - I .  

Clearly Jk is finite. Therefore Jk f l  I is also finite. Now since I is infinite, 
for any k ,  the set I -Jk  cannot possibly be empty. It follows from this (since 
Jk contains all the positive integers which are less than or equal to k and I is a 
subset of the positive integers) that I contains an integer greater than k for each 
nonnegative integer k .  With this in mind we can define the function f recursively 
as follows: Let f (1) be the smallest member of I .  If f ( n )  is defined for any 
n E J ,  there exists an integer in I greater than f ( n )  and so f (n+ 1) can be 
defined as the smallest integer in I which is greater than f ( n ) .  In this way f ( n )  
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can be defined recursively for all n E J .  Hence, by proceeding in this manner, 
we define f on J .  

By constructionf(n+ 1) > f ( n )  for every positive integer n. Iff(n+p) > f ( n )  
for any positive integer p ,  then f ( n  + p + 1) >f( n + p )  > f ( n )  . Hence it follows 
by induction that f ( n + p )  > f ( n )  for every positive integer p .  Now if nl, n2 E J 
and nl # n2, then we can assume that the notation has been chosen so that 
nl >n2. Thus, if we set m=nl-n2 ,  then m E J and nl=m+n2. Therefore 

This shows that f ( n 1 )  # f ( n 2 )  whenever nl # n2; that is,f is injective. 
It remains only to show that f is surjective. To do this we shall prove that 

f ( J ) = I .  In order to obtain a contradiction suppose that f ( J )  # I. Hence the 
set I - f ( J )  of positive integers is not empty and so it has a smallest element, 
say 4. 

Clearly q cannot be the smallest element of I because if it were, it would 
imply that q= f (1) E f ( J )  . Thus1 contains at least one integer less than q and 
therefore I n Jq- l  ZQI. Hence I n Jq- l  (the set of all integers in I which are 
less than q) is a finite nonempty set of real numbers and so it contains a largest 
member, say r. Clearly r d q- 1 < q and q is the smallest member of I which 
is larger than r. (This follows from the fact that r is the largest integer in I which 
is less than q and so there can be no integers in I lying between r and 4.) Since 
q is the smallest member of I which is not inf( J )  , it follows that r E f( J )  . This 
shows that there exists a positive integer s such that r = f ( s ) .  It now follows 
from the definition off thatf(s + 1) = q. Thus q E f( J )  and q E I -f( J )  . Since 
this is impossible we conclude that the assumptionf( J )  # I is incorrect. Hence 
f is surjective. 

Corollary 1: Every subset E of a countable set A is countable. 

Proof: The proof is trivial if E is finite. Hence assume that E is infinite. 
Thus A is infinite and countable and so there exists a bijectionf : A + J .  Let g 
be the restriction off to E. Clearly g is injective sincefis. Thus g is a bijection 
from E to g ( E ) .  In other words E - g ( E ) .  Since E is infinite, it is clear that 
g ( E )  is also. Theorem 4.16 now shows that J - g ( E ) .  By using the symmetric 
and transitive properties of -, we see that E -  J .  Hence E is countable. 

Corollary 2: A nonempty set A is countable if and only if there is an 
injection from A to J .  
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Proof: If A is countable, then, by definition, there is a bijection from A to a 
subset of J .  This mapping is obviously an injection from A to J .  

Conversely, if there is an injection f from A to J ,  then f is a bijection from 
A to f (A).  Hence, A - f (A) and f (A) C J .  Since obviously J is countable, 
Theorem 4.16 shows that f (A) is countable. Hence, f (A)  is either finite, in 
which case A - f (A) shows that A is finite, or f (A) - J ,  in which case since - is an equivalence relation, A - f (A) shows that A - J .  

Theorem 4.17: A nonempty set A is countable if and only if there is a 
surjection f rom J to A .  

Proof: Suppose f is a surjection from J to A. For each x E A ,  the set f - l ( { x } )  
is not empty. Let g ( x )  be the smallest integer in f - l ( { x } ) .  Then g is an injec- 
tion from A to J and corollary 2 of Theorem 4.16 shows that A is countable. 

Conversely, assume A is countable. The second corollary to Theorem 4.16 
shows that there is an injection f from A to J .  Choose any element a E A .  
Since f-’ exists and is a mapping from the subset f (A) of J onto A ,  define a 
function g : J+ A as follows: 

g ( n )  = f - ’ ( n )  
g(n)= a 

for all n E f ( A )  
for all n $5 f ( A )  

Then g is a surjection from J to A .  

this theorem that the following corollary holds. 
Since every functionffrom a set A tof(A) is surjective, we conclude from 

Corollary: A set is countable if and only if it is the range of a sequence. 
Loosely speaking, this corollary states that a set is countable if and only if 

it can be “arranged in a sequence.” 
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In chapter 4, we have given a certain meaning to the “number of elements 
in a set” or, to be more precise, the concept of number of elements has been 
replaced with a more suitable concept which has a precise meaning for sets 
with more than a finite number of elements. Roughly speaking, the “infinite” 
sets are those which have at least as many members as there are positive inte- 
gers. It is with these infinite sets that analysis is principally concerned. 

Definitions were given in chapter 1 for the union and intersection of two 
sets. As a result of these definitions, the union and intersection of any finite 
collection of sets are defined. In order to deal with infinite collections of sets, 
it is necessary to extend the concepts of union and intersection to these col- 
lections. Then after briefly discussing the relations that hold between various 
combinations of unions and intersections, we turn to a discussion of the “num- 
ber of elements” in a set. 

Since this chapter is mainly concerned with setting the background for 
other topics, some of the proofs, although they are quite plausible, are only 
formal, but they can be made into proper proofs by changing some detail. 

First we shall develop a certain formalism, which is frequently used when 
dealing with infinite collections of sets, to designate these collections. We shall 
always assume that the sets with which we are dealing are subsets of some 
universal set X. In order to individuate the various subsets of X we suppose 
there is some set A ,  which is called the index set, and that, with each element 
a of A ,  there is associated a subset ofX, say E, (this defines a function from A to 
the collection of all subsets of X ) .  The set fz whose members are these sets E, is 

fz={E,Ia E A }  (5- 1 ) 

Instead of using the terminology “a set of sets,” it is common practice to 
refer to such a set as a collection of sets or a fami ly  of sets. This helps to make 
clear the various levels of set construction. 
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We shall always assume in dealing with infinite collections of sets that a 
process such as that just described has at least implicitly been carried out. 
The notation given by equation (5-1) will be used to designate the collection of 
sets with which we wish to deal. Thus, the terminology “let R= {G ,  I a E A }  
be a collection of sets” indicates that the various sets G, in the collection are 
individuated in the manner described previously. 

Definition 5.1: Let R = {E,  1 Q! E A }  be a collection of sets. The set 

{x I x E E,  (for at least one a E A ) }  

is called the union of the collection of sets R and is denoted by u E,. 
a E A  

The set 

{xlx E E, (for every a E A ) }  

is called the intersection of the collection of sets R and is denoted by aQAE,. 
Thus, u E, is the set S which has the property that x E S if and only if 

x E E,  for at least one Q! E A and (I E,  is the set I which has the property that 
x E I if and only if x E E, for every a E A.12 We see from this that, for every 
a E A ,  E,  C S and I C E,. On the other hand, if Y and W are any two sets such 
that, for every Q! E A ,  E, C Y and W C E,, then S C V and W C 1. Thus S is 
the smallest set which contains every set E,, and I is the largest set contained 
in every E,. 

It should be noticed that if the index set A consists of two elements, say 
a1 and ag, Definition 5.1 reduces to 

a E A  

a E A  

a E A  u E,= {xlx E E,, or x E Ea2}  

CYEA n E,= {xlx E E,,  and x E E,*} 

and hence reduces to the definitions of union and intersection given in chapter 1. 

l2 Notice that we did not require the index set A to be nonempty. We find in fact that u &=@and n E,=X 
where X is the universal set. The latter relation often causes some difficulty. What it amounts to is this: an element 
x of the universal set does not belong to I only if it does not belong to sorneE,. Since in this case there are noE,’s there 
is no element of the universal set which does not belong to I. Hence, X C I. 

a e 0  a € 0  
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If the index set A is countable, the family R is called a countable collection. 
The corollary to Theorem 4.17 shows that in this case A is the range of a func- 
tion g from the positive integers. Hence each a E A is equal to g ( n )  for some 
n E J .  It is clear from this that 

Hence, defining, for each n E J ,  Fn=Eg(n), we see that when the index set is 
countable it can always be replaced by a subset of J .  We will frequently 
assume that this has been done when dealing with countable collections of sets. 

It might be pointed out that the collection of sets {FnIn E J }  obtained in 
this way is then the range of a sequence {Fn} whose terms are sets. 

Conversely, any sequence whose terms are sets has a countable collection 
of sets {Fnln E J }  for its range. 

If the jndex setA is the set J of positive integers, it is usual to denos  the 
union by u En instead of by u En and to denote the intersection by (I En 
instead of by ncJ En. The symbol ~0 serves here only to indicate that the union or 
intersection of a denumerably infinite collection of sets is taken and has no 
connections with the symbols + ~0 and - ~0 introduced in chapter 2. If the index 
sent A consists of the integers 1, 2, . . ., n, it is usual to denote the union by 
U E m  or by E1 U . . . U En and to denote the intersection by h E m  or by 

m= 1 m= 1 
E1 (7 . . . n E n .  

To illustrate these ideas, suppose that, for each positive integer n, En 
is the subset of the positive real numbers defined by 

n= 1 n E J  n 7 1  

Let R = (En I n,E J } .  As usual 1 is the set of positive integers. The intersection 
of R satisfies n En=@. To see this, note that for every real number x > 0 we 
can find a positive integer m such that l / m  < x and so, for this m, x E m .  

Hence, x 
Now suppose A = { x l O < x < l } ,  E,={yIOdySx}, andCl={E,IxEA}. 

Then 

n: 1 

m m n En. Thus, there is no positive real number i n n  n=l En. 
n= 1 

x E A  u E , = { x I O S x < l }  (5-2) 
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It is clear that for every x E A 

Hence 
x E A  E , c { x I O a x < 1 }  (5-3) 

On the other hand, if t E {x I O  d x  < 11, then t <  1 and so t E Et C E x  - 

{ x ( O s x < 1 }  c E,. Combining this equation with (5-3) shows that 
Now since t was 

equation (5-2) holds. 
The unions and intersections defined in this chapter satisfy many algebraic 

identities that are analogous to those given in chapter 1 for the binary set 
operations. Some of these are listed in table 5-1. 

n arbitrary member of {x I 0 x < l}, this shows that 

Table 5-1. -Set Theoretic Identities 

Associative and commutative laws 

S E D a E A  ( u . 6 )  E A X D  a E A  S E D  

Distributive laws 

DeMorgan's laws 

( u E..)'= n E: ( n q " =  U E ;  
a E A  a E A  a E A  a E A  
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It is not hard to verify these identities. To illustrate the procedure we will 
verify the first of DeMorgan's laws and the second distributive lay. 

In order to show that 

let L and R be the left and right sides, respectively, of this equality. If x E L ,  
E,.  H e n c e x $ E , f o r a n y a E A ,  a n d s o x E E L f o r e v e r y a E A .  

Thereforex E E:. Thus, L C R. 
a E A  

Conversely, if x E R ,  then x E E: for every a E A .  Hence x 4 E, for any 

a E A ,  and thereforex 9 u E,. Thus x E (acAE,)c. This shows R C L ,  and 

it follows that R = L. 
a E A  

To show that 

let L and R be the left and right sides, respectively, of this equality. If x E L ,  
then x E F and x E u E,. Hence x E F ,  and there exists a p E A such that 

x E Ep. Therefore, x E F n Ep for some p E A ,  and so x E u F n E,. This 

shows that L C R. If x E R ,  then, for some p E A ,  x E F n Ep. Hence, x E F 

a n d x E E p f o r s o m e p E A . T h u s x E F a n d x E  u E , a n d s o x E F n  u E,  . 
There are also many relations connecting images of sets and unions and 

intersections of arbitrary collections of sets which generalize those given in 
chapter 4 for binary set operations. We list some of these in table 5-11. 

a E E  

a E E  

a E A  ) 

Table 5-11. -Laws Connecting Images with Unions and Intersections 

v : X 4 Y;  E,, C X for every a E A; Aa C Y for every 6 E D.] 

f-l( u &)=U f-'(A,?) 
S E D  S E D  

57 



ABSTRACT ANALYSIS 

These laws are also easy to verify. For purposes of illustration of the procedure, 
we will verify one of these. 

Let us show that 

Set L equal to the left side of this identity and R equal to the right side. That is, 

L= { y E Y l ( 3 x  E ffvA E, for which y=f(x) 

and R = f f v A f ( E a ) .  For each cy E A ,  

f(E,) = {y E Y I (3% E E,) for which y=f(x)} 

Suppose y E L. Then, for some p E A ,  there exists an x E EP such that 
y=f(x). Hence, for this p, y E f(Ep) , and this shows that y E u f (E , )  = R. 
Since y was any point of L ,  we have shown that L C R. Conversely, suppose 
that y E R. Then, for some p E A ,  y E f ( E p ) .  This means that there exists an 
x E Ep such that y=f(x). Therefore, there certainly exists an x E ch E, such 

that y=f(x). This shows that y E L. Since y was any point of R ,  we see that 
R C L. Combining this with the opposite inclusion shows that L=R. 

In the next theorem we adopt the convention of assuming that matters 
have already been arranged so that the index set of the countable collection 
of sets is J .  

Theorem 5.2: If Q= { E ,  I n E J }  is a countable collection of countable 

n E A  

I Y E A  

00 

sets, then the set S= u En is countable. 

Proof: According to the corollary to Theorem 4.17, for each positive integer n,  
a sequence { X n , k }  whose range is En can be chosen. Having chosen such 
sequences, we form the infinite array 

n-1 
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in which the members of E ,  make up the nth row. Evidently every member of 
S is in this array. If the pattern indicated by the arrows is followed, a corre- 
spondence can be set up between the members of this array and the positive 
integers as follows: 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 . . .  
In this manner then, we can find, for any element in the array and hence for 
any member of S, a positive integer to which it corresponds. This procedure 
therefore defines a surjective mapping from J to S. Theorem 4.17 now shows 
that S is countable. 

This proof is only formal since we have not actually constructed the surjec- 
tive function but only indicated how it is to be constructed. However, the 
mappingf : J X J +- J defined by 

m(m+l)+(n- l ) (n+2rn-2)  
n, m = 1 ,  2, 3, . . . f u n ,  m>>= 2 

can be shown to be a bijection by the theorems of factorization of integers. 
Hence this function can be used to construct the desired surjection. However, 
this is all mere detail with which we will not concern ourselves since the basic 
ideas are indicated in the formal proof. 
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eore : Let A be a countable set; let D1 =A;  and, for  some integer 
n 3 2, let Dn= A X . . . X A (taken n times). Then, f o r  every positive integer 
n,  D, is countable. 

2 ,  D,-1 is 
countable. If x E D, then x= ( d ,  a )  with d E D,-1 and a E A. For each fixed 
d E D n P 1 ,  the set Ed= { ( d ,  a )  la E A }  can be put into one-to-one correspond- 

roof: D1 is obviously countable. Suppose that, for any integer n 

ence with A and is therefore countable. Since Dn= Ed, D, is evidently 
d E D,- ,  

the union of a countable collection of countable sets and therefore Theorem 5.2 
shows that D, is countable. Hence the conclusion follows by induction. 

Proof: If we apply Theorem 5.3 with n= 2 and A the set of all integers, then 
it follows that the set D2 of all ordered pairs ( a ,  b )  where a and b are integers 
is certainly countable. Now every rational number can be written in the form 
b/a where a and b are integers. Hence it is clear that the set of all rationals can 
be put into one-to-one correspondence with a subset E of D2 which corollary 1 
of Theorem 4.16 shows is countable. Hence, E - J or else it is finite. Since 
one-to-one correspondence is an equivalence relation, we conclude that the 
set of all rational numbers is either similar to J or to a finite set. In either case, 
the set of all rationals is countable. 

The final theorem, called Cantor's diagonalization theorem, shows that 
there are many uncountable sets of real numbers. Again the proof which we 
give is only formal but can easily be converted into a proper proof. 

Theorem 5.4: The set A of all real numbers lying between zero and one 
is uncountable. 
Proof: Every real number lying between zero and one can be written in 
decimal form as O.S1S& . . . where the Sj are integers. Let E be any countable 
subset of A .  We can write an arbitrary element of E ,  S " ,  in decimal form as 
§ n = O . § : § ~ S ~  . . . where the ST are integers lying between 0 and 9. Now, 
since E is countable, we can arrange its members in a sequence as follows: 

Corollary: The set of all rationals is countable. 
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s 1 = 0.s:sgs;s; - 
S'= 0.sfs;S;s; * 

s3 = 0.sTspS;sq * 

s4= o.s$;s;s;: * 

s5,, . . . . . . . 
. . . . . . . . 
. . . . . . . . 

Consider the elements S{ along the diagonal of this array. We can choose a 
number p in A as follows. Let p = O.pIpnp3 . . . where p1 f S '1, pz f S;, . . ., 
pj # S;, . . . . We can further choose the integers pj so that they lie between 
zero and nine and are not all zeros or nines. Then the number p differs from 
each member of E in at least one decimal place. Hence p $Z E and p E A so that 
E is a proper subset of A .  

We have thus shown that every countable subset of A is a proper subset 
of A .  It follows that A is uncountable for, otherwise, A would be a proper 
subset of A which is absurd. 
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CHAPTER 6 

Metric Spaces 
Modern analysis began when Cantor developed his theory of point sets 

(which included the important concepts of limit point, derived set, closed set, 
etc.) from a study of the real valued functions on the real line and the distance 
properties of the real line. Using Cantor’s ideas, Frkchet developed the concept 
of metric space (and, for that matter, abstract spaces in general) when, in 1906, 
he gave an abstract generalization of continuous functions on point sets. 
Frhchet’s theory was phenomenally successful because nearly all the continuity 
and convergence arguments that occur in analysis require only the few facts 
about the concept of distance between points which were embodied in this 
theory. The actual term “metric space” was first used by Hausdorff in 1914. 
In fact, he appears to be the first to use the geometrically suggestive word 

space” to refer to a set of objects of unspecified nature which are subject to 
certain postulates. 

In the theory of spaces it turns out to be very helpful as well as convenient 
to use a terminology inspired by classical geometry. Thus the elements of a 
space are referred to as points. A metric space, then, is merely a set of objects, 
called points, between which a measure of distance is defined in such a way 
as to single out those properties of the distance between real numbers (con- 
tained in the order axioms of chapter 2) which are important for convergence 
and continuity arguments. Because continuity and convergence are essentially 
the central concepts in mathematical analysis, this ch‘apter is devoted to the 
study of the fundamental concepts of metric spaces. In the process of dis- 
cussing these spaces, we shall develop the geometric language which is 
currently used to discuss mathematical analysis. The reason for introducing 
some of the concepts in this chapter will become apparent subsequently. 

First, we define metric space. When we think of the distance between two 
points in a plane or two points on a line, we think of a number associated with 
these two points - say the number of inches read from a ruler placed between 
the points. Now if we wish to assign a unique number to each distinct pair of 
elements of an arbitrary set X ,  we can accomplish this by defining a function 
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on X X X  with values in the real number system (see remarks following Defi- 
nition 4.1). With this in mind, we make the following definition. 

Definition 6.1: A metric space ( X ,  d )  is a set X ,  whose members are 
called points, together with a function d : X X X +  R' which, for  all p ,  q,  
t E X ,  has the following properties 

(a) 
(b) d ( P ,  4 )  = d ( 4 ,  P )  
(4 d ( P ,  4 )  d(P7 t )  +d(t7 4 )  

d ( P ,  4 )  > 0 if P + q; d ( P ,  P >  =o 

The function d is called the metric or distance function or simply the 
distance. The value of d at ( p ,  q )  is called the distance between the points 
p and q. 

Postulate (a) expresses the fact that the distance between two points 
is always a positive number and equal to zero if and only if the two points 
coincide; postulate (b) expresses the fact that the distance between two 
points is the same measured in either direction; and postulate (e) expresses 
the fact that the distance between two points is not decreased if it is meas- 
ured via a third point. In fact, postulate (e) is a reflection of the fact that the 
sum of the lengths of two sides of a triangle is greater than or equal to the length 
of the third side, and so it is commonly known as the triangle inequality. 

As in the case of linear spaces discussed in chapter 3 (see remarks follow- 
ing Definition 3.1), it is common practice to refer to a metric space by the name 
of the underlying set. However,, when it is convenient to have the symbol for the 
metric given explicitly, we shall employ the more correct procedure of referring 
to the metric space as the ordered pair ( X ,  d )  where X is the underlying set 
and d is the distance function which, in theory, contains the information as to 
which numbers are to be assigned to each pair of elements inX. 

Among the most important examples of metric spaces are the normed 
linear spaces defined in chapter 3 and, in particular, the Euclidean spaces 
Rk. If v1 and v 2  are any two vectors, it is customary to write v1 - v 2  in place of 
V I  + (- v2). To see that the normed linear space V is in fact a metric space, it 
is only necessary to define the function d : VX V+ R' in terms of the norm by 

Then, comparing postulates (Nl)  to (N3) of Definition 3.4 with postulates (a) 
to (e) of Definition 6.1, we see that d is in fact a distance on the set V. V e  shall 
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always define the distance between points in a normed linear space in this 
manner. In fact, if V is a normed linear space, we shall use the terminology 
“the metric space V” to refer to the metric space which is obtained by using 
equation (6-1) to define a metric on the set V. 

Specializing equation (6-1) to the Euclidean space R k  we see that the 
distance is defined by13 

Therefore, in the Euclidean spaces R 2  and R 3  this is just the magnitude of the 
vector joining the points x and y ,  as it should be. Also, if the points in the plane 
are represented by complex numbers, and if the correspondence between the 
norm of the vectors in the Euclidean space R 2  and the absolute value of the 
corresponding complex numbers pointed out in the discussion following Theo- 
rem 3.6 is used, then, according to this definition, the distance between two 
complex numbers is just the absolute value of the difference of the two complex 
numbers. V e  shall always define the distance between points in the complex 
plane in this manner. 

As we pointed out in chapter 4, the set R’ of real numbers is a normed 
linear space with the usual arithmetic if we define the norm by the absolute 
value. We shall sometimes refer to this normed linear space as the Euclidean 
space R1. The metric on this normed linear space is then defined by equation 
(6-1). The distance between any two real numbers is just the absolute value 
of the difference of the numbers. The metric defined on the real numbers in 
this manner is called the usual metric for R1. 

There are metric spaces more abstract than the Euclidean spaces but 
equally important. For example, let X be any set and let g ( X )  be the set of 
all real valued functions defined on X such that, for any function f E 9 ( X ) ,  
lub {If(.) I I x E X }  < a. Then g ( X )  is a metric space if we define a metric d 
on it by 

for every fi , f2 E 9 ( X )  (6-3) 

We shall not stop here to verify that equation (6-3) is indeed a metric 
since this is a special case of the metric spaces constructed in chapter 11. 
The set B(X)  is a particular example of a large class of metric spaces known 

l3  Notice that according to the convention adopted in mathematics the set R” is merely a set of ordered k-tuples 
of real numbers, but the Euclidean space Rk is the set R” together with the algebraic operations and the norm defined 
in Definition 3.5. Thus the Euclidean space R” is a metric space with the metric dejined by equation (6-2). 
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as function spaces. Assigning metrics to sets of functions gives these sets a 
certain geometric nature which is a great help to our intuition about them. In 
fact much of the success in the theory of functions can be attributed in no small 
measure to the insight gained through this geometric point of view. 

If ( X ,  d )  is a metric space and x, y, and z are any elements of X ,  then it 
follows from postulate (e) of Definition 6.1 that 

and 

We can write these relations as 

and 

But postulate (b) shows that d ( x ,  y) = d ( y ,  x). Hence 

Let X be an arbitrary set. We can define a function d : X  X X +  R' as 
follows: 

1 i f x f y  

0 if x = y  
for every x, y E X 4 x 7  Y) = 

It is clear that conditions (a) and (b) of Definition 6.1 are satisfied. If any two 
of the three elements x, y, z of X are equal, it is easy to see that condition (c) 
is satisfied; if this is not the case, then d ( x ,  z )  = 1 and d ( x ,  y) + d ( y ,  z )  = 2 and 
so condition (e) is satisfied in all cases. Hence, ( X ,  d )  is a metric space. It is 
said to be a discrete metric space. Discrete metric spaces are very useful as 
counterexamples. 
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In certain situations it is useful to allow a metric to take on the value+a 
with the arithmetic given in Definition 2.3 (i.e., d is taken to be a function with 
values in the extended real number system14). This is never done, however, 
unless it is stated explicitly. Although most of the following theorems about 
metric spaces would go through with little change if we allowed an infinite 
metric, we shall restrict ourselves to finite metrics, and only in chapter 11 will 
we consider metric spaces with possibly infinite metrics. 

If ( X ,  d )  is a metric space and Y is any subset ofX, let d y  be the restriction 
of d to Y X Y.  Thus 

dY ( P ,  4 )  = d ( P ,  4 )  for all P ,  4 E y 

It is easy to see that ( Y ,  d y )  is a metric space. For if d satisfies conditions (a) 
to (e) of Definition 6.1 for all p ,  q, t E X ,  then d r  must certainly satisfy these 
conditions for all p ,  q, t E Y. The metric space ( Y ,  d y )  is called a metric sub- 
space of ( X ,  d )  or, when no confusion can occur, simply a subspace of ( X ,  d )  . 
It is common practice (though logically incorrect) not to make any distinction 
between the metric d and its restriction d y .  Thus, we say d and d y  are the 
“same” metrics, drop the subscript Y ,  and write d in place of d y .  No confusion 
can result from this convention since the set Y is indicated explicitly in 
the notation ( Y ,  d ) .  It is important to note that, in contrast to the situation 
for linear spaces (as discussed preceding Definition 3.3) every subset Y of a 
metric space ( X ,  d )  is a metric space in its own right with the “same” metric 
as X .  For example, every subset of the Euclidean space R” is a metric subspace 
of R” but certainly not every subset of Rk  is a Linear subspace of R“. 

As it turns out there are other ways of defining a metric on the set R” (with 

l4 Some authors do not call this function a metric. There is, in fact, a somewhat less restrictive concept than that 

Definition: An ;cart on a set X is a function e : X X X +  R’ U {+w} such that, for all p ,  q, t E X ,  
of a metric which is called an kart  (French for “separation”). This is defined as follows. 

(a) 
(b) e b ,  q )  = e ( q ,  P) 
(4 e ( p ,  4) e ( p .  t )  + e ( t ,  4) 

e ( p .  q )  3 0; e@, P) = O  

The only differences between an &art and a metric is that an &art can take on the value + w and two distinct 
points can have k a r t  zero. In order to verify that an &art e is a metric, it is only necessary to establish that e ( p ,  q )  
is finite for all p ,  q E X and that e ( p ,  q )  # 0 if p # q. 

What we will call a possibly infinite metric, then, is an kcart e with the restriction that e ( p ,  q) # 0 if p # q. An 
&art e of this type can always be replaced by a finite metric. In fact, it is not hard to verify that the function 
d : X X X +  R1 defined by 

d(p ’  ~ ) = 1 + e ( p ,  q )  for all p ,  q E x 
is indeed a metric. 
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k > 1) than that given by equation (6-2). Before discussing this further, let us 
look at a somewhat more general situation. Let (X, d )  and ( Y .  6) be metric 
spaces '5 and consider the set X X Y of ordered pairs. We may ask whether there 
is any way of defining a distance on X X  Y in terms of the metrics d and 6. 
Actually this can be done in several ways. Suppose ( X I ,  y1) and (x2,  y:!) are 
any two points of X X Y. If we define the functions d,, dl, and d:! (from 
(XX Y )  X (XX Y) into R' )  by 

then it is easily verified that each of the three satisfies conditions (a) to (e) 
of Definition 6.1. In other words, (XX Y, d,) ,  ( X X  Y ,  d l ) ,  and ( X X  Y ,  d2) 
are all metric spaces. The metric space (X X Y ,  d,) is called the direct product 
of the metric space ( X ,  d )  and ( Y ,  6). All  the results which we will prove for 
the direct product ( X  X Y ,  d,) of two metric spaces X and Y are also true in 
the metric spaces (X X Y, dl )  and (X X Y, d2). Equations (6-5), (6-6), and (6-7), 
which define the functions d,, dl ,  and d2, respectively, can be extended in 
an obvious way to the product of any finite number of metric spaces. 

Now let us look at the case of R" with k > 1. Since Rk==RS X R"pS with 
1 d s d k- 1, we can construct a metric on the set R" from the metrics on the 
Euclidean spaces Rs and Rk-s by any of the procedures just described. The 
metric defined by equation (6-7) is the same as that defined by equation (6-2) 
for the Euclidean space R" but the other two are certainly different. Thus the 
direct product of the Euclidean spaces Rs and RkpS is a different metric space 
than the Euclidean space R". However, in a certain more general sense which 
we will not go into here (i.e., in the sense of topological spaces), these metric 
spaces are essentially the same. The preceding discussion points out the fact 
that the same set can give rise to more than one metric space, so that the 
convention of referring to the metric space only by the name of the underlying 
set can sometimes lead to confusion. 

Definition 6.2: Let (X, d )  be a metric space and suppose p E X .  W e  
define for any  positive number r the open ball of radius r about p (or 

l5 Of course (X, d )  and ( Y ,  u) can be the same metric space. 
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more simply the ball1 of ra ius r about p )  B(p; r )  to be the set 

We emphasize that the radius of a ball is always a finite number and is 
never equal to zero. An arbitrary ball B ( p ;  r )  is always a nonempty set since 
it contains the point p .  It is often helpful to think of the ball B ( p ;  r )  as being 
the set of all points “close to” p-the degree of closeness being given by I: 

The notationB(p; r )  used in Definition 6.2 for balls is more or less standard. 
It should be noted that this notation makes no provision for indicating the metric 
space to which the ball belongs. Thus, when one considers two (or more) metric 
spaces simultaneously, the same letter B is used to designate the balls in both 
spaces. When this is done, it is always made clear to which space the center 
of the ball (p in eq. (6-8)) belongs, and this is used to determine which space 
the ball is in. Occasionally, when the location of the center of the ball and its 
radius are immaterial to the discussion (and when no confusion is likely to 
result), a ball is denoted simply by the letter B with the argument omitted. 

If V is a normed linear space (the metric is defined by eq. (6-1)), then the 
ball of radius r about the point u is the set 

So that, in particular, balls in the Euclidean space R” (the metric is given by 
eq. (6-2)) are the sets 

B ( x ;  r )  == {y E R”1 I x - y l <  r }  x E R” 

According to the discussion following Definition 6.1, balls in the complex 
plane are the interiors of circles,16 as are the balls in the Euclidean space R 2 .  
Naturally, when the complex numbers are identified with the points of R 2  in 
the manner described following Theorem 3.6, the balls in the complex plane 
and those in the Euclidean space R 2  consist of the same points. 

In the Euclidean space R3 balls are the interiors of spheres. 
When equations (6-5) to (6-7) are used to define metrics on R 2  in terms 

of the metric on the Euclidean space R1,  the appearance of the balls are dif- 
ferent in each case. The balls arising from the metric d ,  are interiors” of G G -  

‘6 In this context balls are often referred to as disks. 
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squares,17 those arising from dl are 66. interiors” of diamond-shaped regions, 
66. and those arising from dg are interiors” of circles. 

More generally, let ( X ,  d )  and ( Y ,  8) be any  two metric spaces and let 
B ( ( x ,  y ) ;  r )  be a ball about any  point (x, y )  in the directproduct ( X X  Y ,  d,) 
of ( X ,  d )  and ( Y ,  8). Then 

As far as the material discussed in this book is concerned, it is not impor- 
tant what detailed “shapes” balls have. Roughly speaking, it is only necessary 
that the balls in any metric space have no dimension which is excessively large 
compared with its other dimensions, that they consist only of the interiors of 
sets, and that each point of the space is contained in a ball of arbitrarily 
“small” size. 

If ( X ,  d )  is a discrete metric space, then for any p E X 

{ p }  if r d  1 
X i f r > l  B ( p ;  r> = { 

Definition 6.3: If a and b, with a < b, are any real (or extended real) 
numbers, the segment ( a ,  b )  is defined to be the set of real numbers 

and the interval [a,  b]  is defined to be the set of real (or extended real) numbers 

W e  shall also sometimes encounter the half-open intervals [a,  b )  and (a ,  b ] :  
the first is defined to be the set of real (or extended real) numbers 

{xla d x < b} 

and the second is defined to be the set of real (or extended real) numbers 

{xla < x d b}  

Let a i d  bi for  i = l ,  2 ,  . . ., k be (finite) real numbers. V e  shall define the 

I7 A precise definition of the interior of a set will be given subsequently. 
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FE-cell Q to be the set 

If we let I i=  [ai, bi] f o r  1 d i d  k, then, as shown at the end of chapter 1 ,  we can 
also write this as 

Thus, for a and b finite, the segment ( a ,  b )  is a ball in the metric space 
R 1  with the usual metric. We remind the reader that points in the spaces R k  
must havefinite real numbers for their coordinates. A 1-cell is an interval, a 
2-cell is a rectangle, etc. 

The concept in the following definition will not be used here but is given 
for the sake of completeness. 

Definition 6.4: Let V be a normed linear space. A set E C V is convex if  

h i +  ( 1 - h ) ~ 2  E E 

whenever v1 E E,  v2 E E and 0 < h < 1. 

is also a convex set. For if llvl- 811 < r and 11 vz - 
follows from (N3) of Definition 3.4 that 

It is easily seen that every subspace of V is a convex set. Every ball in V 
r and 0 < h < 1, then it 

It is also readily shown that in R k  every k-cell is convex. 

and let p E X .  

p contains at least one point of E Cp is also said to adhere to E). 

contains at least one point of E - { p ] .  

B about p such that B C E. 

Definition 6.5: Let ( X ,  d )  be a metric space, let E be any  subset of X ,  

(a) A point p is called an  adherence point of the set E if every ball about 

(b) A point p is called a limit point of the set E if every ball about p 

(e) A point p is called an interior point of the set E if there exists a ball 
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Intuitively, we may think of an interior point of a set E as being a point 
which has only points of E in its immediate vicinity. In the complex plane this 
corresponds to a point being “inside” the set. 

Notice that {p} is the one point set that consists of the point p alone. 
Therefore, the set E - { p }  is the set of all points of E except possibly the point 
p itself, if p happens to be a point of E .  Thus we may think of a limit point of 
E as being a point which has at least some points of E ,  other than itself, arbi- 
trarily close to it. If p is a limit point of E ,  then p is an adherence point of 

Suppose the metric space X is the set of real numbers R’ with the usual 
metric, E= { l /n ln= 1,  2 , 3 ,  . . .}, andp=  0. Thenp is not a point of E .  Since, 
in R’, the ball about 0 of radius 6 is the segment (- 6, 6) , it is clear that, for 
any 6 > 0, we can choose n so large that I /n  < 6. Thus every ball about p con- 
tains at least one point of E.  Since p 9 E ,  E - { p }  = {x E R’lx E E and 
x 9 { p } )  = E ,  and we see that p is a limit point of E. 

If we let E and X be the same as above but now set p =  1, then p E E. 
Since the segment (3/4,  la) is the ball about p =  1 of radius 1/4 and since the 
only point of E contained in this ball is p, we see that B(p, 1/4)  contains a 
point of E but no point of E - { p } = { l / n J n = 2 ,  3, 4 ,  . . .}. Hence p is not a 
limit point of E. On the other hand, since every ball about p contains p and 
p is a point of E ,  it is clear that every ball about p contains a point of E. Hence 
p is an adherence point of E .  

E - I P I .  

Definition 6.6: Let X he a metric space and let E C X .  
(a) The set of all adherence points of a set E is called the closure of E 

and is denoted by E .  
(b) The set of all limit points of a set E i s  called the derived set of E and 

is denoted by E’. 
(c) The set of all interior points of a set E is called the interior of E and 

i s  denoted by Eo. 
To illustrate the concepts involved in this definition, suppose that the 

metric space X is R 1  with the usual metric and suppose that E is the half-open 
interval (0, 13 ; that is, 

E = { x  E RllO < x < 1)  

In this case, because the only limit point of E not belonging to E is 0, the set 
E of all adherence points of E is the closed interval [ O ,  l]={x E Rl(x=O or 
x E (0, l ] } .  Furthermore, since every point of E is a limit point, the set E’ of 
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all limit points of E is also equal to [0, 11. Now the only point of E that is not 
an interior point is 1 and hence the interior Eo of E is (0, 1). 

To obtain another illustration, let the metric space X be the discrete set 
of points given by X =  { (x, y )  E R21x, y E J }  with the metric defined in terms 
.of the absolute value as in equation (6-2). As always, J is the set of positive 
integers. Let E= { ( m ,  n)  E X l m  d M and n d N> where M and N are fixed 
integers such that M ,  N 2 1. Since E has no limit points, E = E  and E’ = @. 
Also, since, for each point ( m ,  n )  E E ,  any ball about ( m ,  n)  of radius less than 
1 only contains a single point of E ,  namely, ( m ,  n )  itself, every point of E is 
an interior point. Hence E o = E .  Thus, in this case, E= Eo= E. Now, if the 
metric space X is changed to R 2  (with metric still defined by eq. (6-2)) while 
E is left unchanged, it is still true that E ’=@and  that E = E .  However, the 
points of E are no longer interior points (every ball about a point of E contains 
points of R 2  not belonging to E )  and Eo =I $3. 

Definition 6.7: Let X be a metric space and let E be any  subset of X :  
(a) E is said to be dense in X ; f E = X .  
(b) E is said to be closed if  E’ C E. 
(e) E is said to be open if  Eo=E. 
Intuitively, a set is closed if none of its points are arbitrarily close to points 

outside the set. In the complex plane a set islopen if all of its points are “inside” 
the set. 

Clearly, the entire space X is both a closed and an open set. It follows 
from Definition 6.5 that every point of a set E is an  adherence point of E and 
that every limit point of E is an adherence point of E. Conversely, if p adheres 
to a set E and is not a limit point of E ,  then there is a ball B about p which 
contains no points of the set E - { p }  but contains at least one point of E. We 
conclude (since p E E implies E = E -  { p } )  that p is a point of E. Points for 
which this occurs are called isolated points of E. Thus a point is an adherence 
point of a set E if and only if it is either a point of E or a limit point of E. This 
can be written in symbols as 

E = E  U E‘ 

From this and the equivalence of relations (1-2a) and (1-2c) of chapter 1, it 
follows immediately that a set E is closed if and only if ,!?=E. We could then 
have used this condition as the definition of a closed set. Compare this with 
Definition 6.7(c). 
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It is also clear that, for any set E ,  

E O C E C E  
In the preceding discussion we have pointed out some almost immediate 

consequences of Definitions 6.5 to 6.7. We now prove as theorems some less 
direct consequences of these definitions. 

Theorem 6.8: E C F implies E C and, for  any two sets E1 and Ez,  

(6-10) 
Proof: Suppose E C F .  If p is a point of E ,  it is also a point of F and therefore 
a point of F. If p is a limit point of E ,  then it is also a limit point of Fand there- 
fore a point of F .  Thus p E ,!? implies p € F .  Hence we conclude that E C F 
implies C F. For any two sets E1 and E2, this shows that E1 C E l  u Ez and 
E2 C E l  U E2.  Therefore, E1 U E 2  C El  U Ez.  Now suppose p E El  U E2 but 
p El U E 2 ;  that is p $E El and p fE E 2 .  Then there exist balls B ( p ;  r l )  and 
B ( p ;  r2 )  about p such that B ( p ;  r l )  fl El=@ and B ( p ;  r2) fl E2=@. Let r 
be the smaller of the positive numbers rl and r2. Then B ( p ;  r )  C B ( p ;  r l )  and 
B ( p ;  r )  C B ( p ;  rz). Hence B ( p ;  r )  n E1 = 0 and B ( p ;  r )  f l  Ez= 0. Thus 
B ( p ;  r )  fl ( E 1  U Ez)  = 0. This shows that p is not an adherence point of 
E l  U E&; that is, p E1 U E2, which is a contradiction. We see, then, that 
p E E1 U 232 implies p E E1 U E z  (i.e., E1 U Ez C E1 U E z )  and so we 
conclude that E1 U Ez=E1 U Ez. 

It is easily seen that the argument used in the proof can be extended to 
any finite union of sets. We must point out, however, that it cannot be extended 
to any infinite union of sets since the proof depends very strongly on the fact 
that the smallest member of a finite set of positive numbers is a positive num- 
ber. In the case of an infinite set, of course, the proper extension of the concept 
of smallest member is the concept of greatest lower bound, and it is not true, 
in general, that the greatest lower bound of a set of positive numbers is positive. 
We shall frequently encounter the principle involved here. 

Corollary: I f  F is closed and E C F ,  then E C F.  
Proof: This follows from the theorem and the fact that, if F is closed, F =  F.  

Theorem 6.9: (a) Every ball about a limit point p of a set E contains 
infinitely many points of E. (b) I f  A is a dense subset of the metric space ( X ,  d )  
and p is a limit point of X ,  then p is a limit point of A .  

74 



M€TR/C SPAC€S 

roof: Part (a). The proof is by contradiction. Hence assume that there 
exists a ball B about p which contains only finitely many points of E and, there- 
fore, only finitely many points of E - { p }  (B must contain at least one point of 
E - (p} since p is a limit point of E). Denote those points of E -  { p }  which 
belong to B by 41, q 2 ,  . . ., q n .  Now there exists an integer m such that 
l d m d n a n d  

l c j s n  min d ( p ,  q j )  = d ( p ,  q n z )  

Since by construction qj # p for any j ,  it follows that d ( p ,  q j )  > 0 for 1 dj d n 
and in particular that d ( p ,  q m )  > 0. It is clear that, for 1 dj d n, 

So the ball B ( p ;  d ( p ,  q m )  ) about p contains no point of E -  { p }  , andp cannot 
be a limit point of E. This is contrary to hypothesis and therefore the assump- 
tion must be false. This proves part (a). 

Part (b). Since p is a limit point of X ,  any ball B ( p ;  E )  about p contains a 
point of X -  { p } .  Let q be such a point. Clearly 0 < d ( p ,  q )  < E .  Hence upon 
putting p= min { d ( p ,  q ) ,  E - d ( p ,  q ) } ,  we find that p > 0. If s is any point of 
B ( 4 ;  p),  then 

d ( P ,  s> d d ( P ,  4 )  + 4 4 , s )  < d(p ,  4 )  + p 4 p ,  q )  + E  - d ( P ,  4 )  = E 

Therefore s E B ( p ,  E ) .  Since s was an arbitrary point of B ( q ,  p), we conclude 
from this that B ( q ;  p )  C B ( p ;  E ) .  Now p $ B ( q ;  p )  since d ( p ,  q )  Z- p. But it 
follows from the fact that A is a dense subset of X that B ( q ;  p) contains a point 
of A ,  say t .  Thus t E B ( p ,  E )  and t # p .  This shows that B ( p ;  E )  contains a 
point of A - {p } .  Since B ( p ;  E )  was any ball about p ,  we conclude that p is a 
limit point of A .  

The following corollary is an immediate consequence of this theorem. 
Corollary: No finite set can have a limit point. 
If the set E has no limit points, then E’ = (3 and, since $3 is a subset of every 

set, we see E’CE. We therefore conclude that every finite set is closed. If 
every ball B about p contains infinitely many points of E ,  then certainly it 
contains at least one point of E - {p} .  It therefore follows from Theorem 6.9(a) 
that a point p is a limit point of a set E if any only if every ball about p con- 
tains infinitely many points of E. There is no reason why this could not have 

355-525 0-70-6 
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been taken as the definition of a limit point instead of the one given in 
Definition 6.5(b). 

Theorem 6.10: A subset E of a metric space is open $ and only i f  its 
complement is closed. 

Proof: Let E" be closed and let p be any point of E. By definition p @ E" and 
therefore p cannot be a limit point of E". This means that there is some ball B 
about p such that B contains no points of E"- { p } .  Since p e E", this shows 
that B contains no points of E". Thus, q E B implies q E",  which in turn 
implies q E E .  It follows that B C E. Thus p is an interior point of E. Since p 
was any point of E ,  we conclude that E is open. 

Conversely, let E be an open set and let p be any limit point of E". Then 
every ball about p must contain at least one point of E"; that is, no ball about 
p contains only points of E. This shows that p cannot be an interior point of E .  
But the fact that E is open then implies that p cannot be a point of E which 
means that it must be a point of E". Since p was any limit point of E", we 
conclude that E" contains all its limit points. 

Now let F be any set. Since F is the complement of FC,  the theorem shows 
that if F is closed then F" is an open set and that if F is an open set then F" 
is closed. Thus, the following corollary is an immediate consequence of this 
theorem. 

Corollary: A subset F of a metric space is closed if and only if its comple- 
ment is open. 

We see from this that, having defined open sets, we could have defined 
the closed sets to be just those sets which are the complements of the open sets. 

If ( X ,  d )  is any metric space, the empty set 0 being equal to X" must be 
both open and closed. It is easy to show that, in Rk2 0 and Rk are the only sub- 
sets which are both open and closed. 

The proof of the next theorem is illustrated in figure 6-1. 
Theorem 6.11 : Balls are open sets. 

Proof: Suppose q is an arbitrary point of the ball B ( p ;  r ) .  Since d ( p ,  q )  < r ,  
we can find a positive number u such that 
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Now if t E B ( q ;  u ) ,  then d ( t ,  q )  < u. Therefore d ( p ,  t )  d d ( p ,  q )  + d ( q ,  t )  
< r- u + u = r. This shows that t E B ( p ;  r )  which implies 

Thus q is an interior point of B ( p ;  r ) .  Since q was an arbitrary point of B ( p ;  r )  , 
we conclude that B ( p ;  r )  is open. 

FIGURE 6-1. -Venn diagram illustrating Theorem 6.11. 

The technique used in the proof of part (b) of the next theorem can easily 
be adapted to show that any intersection or union of a finite collection of balls 
about a single point p is also a ball about p .  This theorem gives the principal 
“internal” properties of open sets. 

Theorem 6.12: (a) The union of an arbitrary collection of open sets is 
open. (b) The intersection of a finite collection of open sets is open. (c) The 
empty set and the entire space are open. 
Proof: To begin with, part (c) has already been established, and we include 
it here only for later reference. 

Part (a). Let {G,laE:A} be an arbitrary collection of open sets. If 
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p E G  means that, for some a E A ,  p EG,. Since 6, is an open set, there must be 
a ball B about p such that B C G ,  and, therefore, it must also be true that 
B C G. This shows that p is an interior point of C: and since p is an arbitrary 
point of G, it follows that G is open. 

Part (b). Now let { G I ,  Ge, . . ., Gn} be a finite collection of open sets. If 

p E E  means that p EGi for every i = 1, 2 ,  . . . , n. Since each Gi is an open 
set, there exist ballsB(p; ri)  aboutp such that B(p; ri)  C Gi for i= 1,2 ,  . . . , n. 

If we set 
r= min Ti 

l s i s n  

then r > 0 and for every i= 1, 2, . . ., n, 

and therefore that p is an interior point of E. Hence (since p was any point 
of E)  E is open. 

Proof: If (X, d )  is a discrete metric space, then { p ) = B ( p ;  l / Z )  for every 
p EX. If E is any subset ofX, it is clear that E= u (p}.-Hence E= u B(p; 1/2). 

Thus E is the union of open sets. Theorem 6.12(a) now shows that E is open. 
Corollary 2: The intersection of an  arbitrary collection of closed sets 

is closed. The union of a finite collection of closed sets is closed. 
Proof: Let {F,]aEA} be an arbitrary collection of closed sets. The corollary 
to Theorem 6.10 shows that, for each aEA,  F;is open. Thus, Theorem 6.12 

shows that u Fg is open, and so Theorem 6.10 shows that is closed. 

But taking the complement of the second DeMorgan law of table 5-1 yields 

Corollary 1 : Every subset of a discrete metric space is open. 

P E E  P E E  

u Fg 
CIEA LA ) 
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the identity 

CYEA 

The second part of the corollary follows in the same way from part (b) 
of Theorem 6.12 and from the following identity obtained from table 5-1: 

We might mention that, since in the Euclidean space R1 the segments 
(- l /n ,  l /n )  are open sets for n =  1 , 2 , 3 ,  . . . and since n (- l /n ,  l /n)  = {0}, 

part (b) of Theorem 6.12 cannot be extended to infinite collections of open sets. 
Theorems 6.11 and 6.12 show that an arbitrary union of balls is an open 

set. On the other hand, if G is any open set and p is any point of G, there is a 
ball B ( p ;  rp) about p such that B ( p ;  rp)CG and therefore u B ( p ;  rp) CG.  But 
every point of G is in one of these balls so we conclude 

m 

n= 1 

P EC 

Therefore every open set is a union of balls. We thus arrive at the following 
conclusion: A set is open if and only if it is a union of balls. This gives us then 
another way of defining open sets. Upon combining this with the remarks 
following Theorem 6.10, it becomes clear that once it is known which subsets 
of a given metric space are balls all the open and closed sets can be found. 

Thus, in the case of R' with the usual metric, all the segments are open 
sets and any set which is a union of segments is an open set. In the complex 
plane, the interiors of disks are open sets; that is, if z is the complex variable 
x+ iy (x and y real), all sets of the form {zI IzI < r }  (with r > 0) are open. Also, 
any union of sets of this type is open. In three-dimensional Euclidean space, 
the interiors of spheres are open sets, etc. On the other hand, even though 
every segment is an open set when considered as a subset of the Euclidean 
space R' ,  segments are not open sets if they are considered as subsets of the 
Euclidean space R2. To see this, notice that every circle around a point on the 
line contains points of R2 in its interior which are not on the line and these 
points do not belong to any segment. 
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Suppose that E1 is an open subset of the metric space ( X ,  d )  and E2 is 
an open subset of the metric space ( Y ,  8 ) .  If (x, y) is any point of El X E 2 ,  
then there exist balls B(x ;  r l )  C E1 and B(y ;  rz) E&. If we set r=min {rl, rz}, 
then B ( x ;  r )  c B ( x ;  r l )  cE1 ,  and B ( y ;  r )  C B ( y ;  rz) CE2. Equation (6-9) shows 
that if B ( ( x ,  y); r )  is the ball about (x, y) of radius r in the direct product 
( X  X Y ,  d,) of ( X ,  d )  and ( Y ,  S) ,  then 

Since (x, y) was any point of E l  X EZ, we have just proved that if  E l  is an  open 
subset of a metric space ( X ,  d )  and E2 is a n  open subset of the metric space 
( Y ,  S ) ,  then El X E2 is an  open subset of the direct product of the two spaces. 

We have already pointed out that, although we have proved this result 
only for the metric space ( X  X Y ,  d,) ,  it also holds true for the metric spaces 
( X  X Y ,  d l )  and ( X  X Y ,  d 2 )  where dl and dz are the metrics defined by equations 
(6-6) and (6-7), respectively. 

Theorem 6.12 gives us a means of forming a mathematical structure which 
is more general than the metric space. The statement of this theorem contains 
three properties that open sets must have. If these are taken as postulates, 
they can be used in a certain sense to define the open sets. In this manner the 
notion of open sets can be taken as basic instead of the notion of distance as 
in the case of metric space. To be more specific, suppose we are given a set X 
and a certain collection 0 of subsets of X .  Suppose the members of 0 are called 
open sets and they satisfy conditions (a) to (e) of Theorem 6.12. Then, ( X ,  0) 
is called a topoZogicaZ space and 0 is called a topoZogy for X .  The concept of 
topological space grew out of Hausdorffs work in 1914. 

Thus, given any metric space ( X ,  d ) ,  there is a topological space ( X ,  0) 
(having the same basic set X )  associated with it in such a way that the members 
of 0 are just the open sets in ( X ,  d ) .  Given any set X there are usually many 
ways of defining a distance on that set. Thus, for the same set X ,  we may have 
two different metric spaces ( X ,  d )  and ( X ,  d ’ )  corresponding to the different 
metrics d and d’. We have already encountered this situation when we defined 
a metric on the direct product of two metric spaces in terms of the metrics 
defined on each of the component metric spaces. It may turn out, however, 
that these different metric spaces ( X ,  d )  and ( X ,  d ’ )  are associated with the 
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same topological space.I8 If this is the case, the metrics d and d’ are said to 
give rise to the same topology for X or to be topologically equivalent. We shall 
give a more precise definition of this concept in chapter 9. 

On the other hand, not every topological space can be associated with 
a metric space in this manner. Those which can be are said to be metrizable. 
Since a topological space is really such a general structure, it turns out that 
metrizable spaces possess many desirable properties which general topological 
spaces do not. This condition is ameliorated in practice by restricting the 
topological spaces further by the imposition of one or more postulates in addi- 
tion to those already discussed. In this way several different types of topological 
spaces arise which are still more general than metrizable spaces but have many 
of their desirable features. 

In topological spaces, the concept of ball is replaced by the concept of 
neighborhood. A neighborhood of a point is defined to be any open set which 
contains that point. It turns out, as we shall see, that much of what will be said 
about general metric spaces can be expressed by using the concept of ball 
instead of referring to the metric explicitly. In turn, since every ball about 
a point is also a neighborhood and every neighborhood of a point contains a ball 
about that point, much of this still goes through when balls are replaced by 
neighborhoods. In this way a large part of theory of metric spaces developed 
here can be applied to topological spaces. The preceding discussion shows 
that many of the properties of a given metric space can be completely specified 
in terms of the open sets (neighborhoods) of that metric space. Such properties 
are then also intrinsic properties of the associated topological space and are 
therefore called the topoZogica1 properties of the metric space (as opposed to 
the purely metric properties). For example, if p is an adherence point of a set 
E and Y is any neighborhood of p ,  there is a ball B about p such that B C V. 
Since B contains a point of E ,  so does V. Thus every neighborhood of p contains 
a point of E. Conversely, since balls are neighborhoods, if every neighborhood 
of p contains a point of E ,  then certainly every ball about p must also. Hence a 
point p is an adherence point of a set E if and only if every neighborhood of p 

lx Actually the three rnetrics given in equations (6-5), (W), and (6-7) determine the same topological space. 
In fact, it can be shown that there exist constants c1 and cz such that 

cldi(p, q)  dj(P, q )  czdi(p, q)  

where i, j = X ,  1, 2. We shall see in chapter 9 that any two rnetrics that satisfy a relation of this type determine the 
same topological space. 
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contains a point of E. We see then that whether or not a given point is an 
adherence point of a given set is a topological property since it, in effect, 
depends only on which sets are open. For a further discussion of topological 
spaces, the reader is referred to references 2 to 4. 

Proof: According to the corollary to Theorem 6.10, it is sufficient to prove E" 
is open. Let p be any point of E". If we can show that p is an interior point of E", 
we are done. Evidently p e E. Therefore, there exists a ball B(p;  r )  about p 
which contains no points of E ;  that is, B ( p ;  r )  C E". Theorem 6.11 shows that 
B ( p ;  r )  is open. Hence, if q is any point of B ( p ;  r ) ,  there exists a ball B ( q ;  p )  
about q such that B ( q ;  p )  C B ( p ;  r )  C E". This shows that B ( q ;  p )  contains no 
points of E and therefore that q is not an adherence point of E. Since q was 
arbitrary, we conclude that no point of B ( p ;  r )  is an adherence point of E. 
Hence no point of B(p;  r )  is a point of E; that is, B ( p ;  r )  C E". Thus p is an 
interior point of Ec. 

If p is a point of a metric space ( X ,  d )  and r is a nonnegative number then 
the set 

Theorem 6.13 : For any  set E ,  E is closed. 

C ( p ;  r )  = {x E X I d ( p ,  x) s r> 

is often called the closed ball of radius r about p .  Let q be any point of C " ( p ;  r ) ,  
the complement of C ( p ;  r ) .  Then d ( p ,  q )  > r. Hence upon setting p= d(p, q)-r, 
we find that p > 0. Now if y E B(q;  p) then 

Hence, y C ( p ;  r ) ;  that is, y E G ( p ;  r ) .  Since y was any point of B ( q ;  p ) ,  we 
conclude that B ( q ;  p )  C C"(p;  r ) .  And, since q was any point of C"(p;  r ) ,  we 
conclude that C"(p;  r )  is open. The corollary to Theorem 6.10 now shows that 
C ( p ;  r )  is indeed closed. However, it is not true in general that C ( p ;  r )  = B ( p ;  r) .  
For if ( X ,  d )  is a discrete metric space then for any point p E X 

B ( p ;  1) = {P}'{PI  
But C ( p ;  1) = X .  

Let us emphasize that when the term "ball" is used it always refers to a n  
open ball. The closed balls in R 1  are intervals. 

We see from Theorem 6.13 and the corollary of Theorem 6.8 that E is the 
smallest closed set which contains E. Let R =  {F,Ja E A }  be the collection of 
all closed sets which contain E. The collection R is certainly not empty since 
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the whole space itself is in a. The second corollary to Theorem 6.12 shows that 
ce E C Fa for every a E A ,  we see that E C 

Fa i s  a subset of every closed set which contains E ;  
Fa is also the smallest closed set which contains E. Evidently then 

Fa is closed and, 

E = i n  Fa 
CYEA 

Thus we could have defined the closure of a set E to be the smallest closed 
set which contains E or, equivalently, the intersection of all closed sets which 
contain E .  

It is easy to see that in R1 (with the usual metric) every interval is a closed 
set and in Euclidean space Rk everyk-cell is a closed set. 

Theorem 6.14: (a) Every closed set of real numbers which is bounded 
above contains its least upper bound. (b) Every closed set of real numbers which 
is bounded below contains its greatest lower bound. 
Proof: Part (a). Let E be any closed set of real numbers which is bounded 
above and set b = sup E (which exists by axiom I11 of chapter 2). For every 
positive number 6, b - 6 is not an upper bound of E.  Hence there exists a point 
p E E such that b-  6 < p .  Now if we assume b e E ,  we can conclude that 
b - 6 < p <  b. Since in R1 balls are segments (i.e., B ( b ;  6 ) = ( b - 6 ,  b + 6 ) ) ,  
we see that every ball about b contains a point of E - { b}. This shows that b is 
a limit point of E. But since E is closed, this implies b E E. 

Part (b). The proof is similar to that of part (a). 
We have already observed that, if Y is any subset of the metric space 

( X ,  d )  , Y itself is a metric space with the same metric; that is, ( Y ,  d )  is a metric 
space. We have seen by example, however, that, if E C Y C X and E is an open 
subset of the metric space ( Y ,  d ) ,  E need not be an open subset of the metric 
space ( X ,  d ) .  Of course, the same must be true for closed sets since they are 
merely the complements of the open sets. Actually it turns out that there is a 
simple relation between the open sets in ( X ,  d )  and those in ( Y ,  d ) .  Since the 
property of being open is really defined in terms of balls, we shall first discuss 
the relation between the balls in the metric space ( X ,  d )  and those in the 
metric space ( Y ,  d ) .  Let us temporarily denote balls in the metric space ( X ,  d )  
by attaching the superscript X to the usual notation and those in the metric 
space ( Y ,  d)  by attaching a superscript Y. Thus, for example, B x ( p ;  r )  denotes 
a ball in ( X ,  d )  and B Y ( q ;  p )  denotes a ball in ( Y ,  d ) .  We now look at the 
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definition of balls. Equation (6-8) of Definition 6.2 tells us that the balls in 
( X ,  d )  are sets of the form 

and the balls in ( Y ,  d )  are sets of the form 

where of course it is understood here that p E Y. It follows from these relations 
that if B Y ( p ;  r )  is any ball in ( Y ,  d }  about any point p E Y ,  then 

Of course, this also shows that if p is any point of Y and B X ( p ;  r )  is any ball 
about p in the metric space ( X ,  d ) ,  then B X ( p ;  r )  n Y is a ball about p (of 
radius r )  in the subspace ( Y ,  d ) .  Thus the following theorem has been proved. 

Theorem 6.15: Let ( X ,  d )  be a metric space and suppose Y C X .  Then, 
for  any point p E Y,  the set A is a ball about p of radius r in the subspace ( Y ,  d )  
if and only $there is a ball B X ( p ;  r )  about p of radius r in the metric space 
( X ,  d )  such that 

A = Y  f l  B x ( p ;  r )  

This theorem is illustrated in figure 6-2. 

FIGURE 6-2. -Balls in subspaces. 

We now turn to the general case of open sets, and prove the following 
theorem. 
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Theorem 6.16: Let ( X ,  d )  be a metric space and suppose Y C X .  Then 
a subset G of Y is open in the subspace (Y ,  d )  if and only if there exists an open 
subset H of the metric space Vy, d )  such that 

G = Y n H  (6-12) 

Proof: First suppose that G is an open set in the metric space ( Y ,  d ) .  We have 
already shown in the remarks following the corollaries to Theorem 6.12 (eq. 
(6-11)) that, for every p E G, there exists a positive number r, such that 

G= u B y ( p ; r p )  
p € : G  

Theorem 6.15 now shows that, for each p E Y ,  

B Y ( p ;  rp)=Y f~ B X ( p ;  rp)  
Hence 

and Theorems 6.11 and 6.12 show that the set H =  U B X ( p ;  I.) is an open set 
in the metric space ( X ,  d). 

Conversely, suppose G is given by equation (6-12) and H is an open set 
in the metric space ( X ,  d ) .  If p is any point of G ,  then p E H and, since H is 
open in the metric space ( X ,  d ) ,  we can find a ball B X ( p ;  p )  about p such that 
B X ( p ;  p)  C H .  Hence 

P E G  

Y n B X ( ~ ;  p )  c Y n H=G 

but Theorem 6.15 shows that Y n B X ( p ;  p) is a ball in the metric space ( Y ,  d )  
about p .  Thus in the metric space ( Y ,  d )  all the points of G are interior points. 

Corollary 1: If ( X ,  d )  is a metric space and E C X ,  a necessary and SUB- 
cient condition that every subset D of E which is open in the metric space ( E ,  d )  
be open in the metric space ( X ,  d )  is that E is an  open subset of ( X ,  d )  . 
Proof: To see that this condition is necessary, we need only consider the case 
when D = E. The sufficiency of the condition follows from the theorem and the 
fact that (Theorem 6.12(b)) the intersection of two open sets is open. 
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Corollary 2: I f  ( X ,  d )  is a metric space and E is any subset of X ,  then the 
set D C E is closed in the metric space ( E ,  d )  if and only if there exists a closed 
subset F of ( X ,  d )  such that D=F n E. 
Proof: By the corollary to Theorem 6.10, D is a closed subset of ( E ,  d )  if and 
only if the complement of D in E ,  E - D ,  is an open subset of ( E ,  d ) .  Therefore 
it follows from the theorem that D is a closed subset of ( E ,  d )  if and only if 
there exists an open set G of ( X ,  d )  such that 

E - D = G  n E (6-13) 

Since E - D = E fl D', equation (6-13) is  equivalent to 

and hence by the distributive law (table 1-1) to 

E" U DC=EC U G 

DeMorgan's law now shows that equation (6-13) is equivalent to 

E n D=E n G" 

But since D C E ,  equation (6-13) is also equivalent to 

D=E n GC 

The corollary to Theorem 6.10 now shows that the assertion is true if we take 
F = G". 

Definition 6.17: An open cover of a subset E of a metric space is any  
family  {Gala  E A }  of open subsets of the metric space such that E C u G,. 

Definition 6.18: A subset K of a metric space is called compact i fevery 
open cover of K contains a finite subcover of K.  A metric space is called a 
compact space i f  it is a compact subset of itself. 

This means that if {Gala E A }  is any open cover of K then there is a finite 
number of the a's, say al, az,  . . ., a,, such that 

LYEA 

K C G,, U G,, U . . . U G,, 

The definition of compactness given in this form shows clearly that it is a topo- 
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logical property. Although compact sets are extremely important, it is not easy 
to give a physical picture of the property of compactness. It is clear that every 
finite set is compact and that the union of a finite number of compact sets is 
compact. In fact, compact sets have many of the properties of finite sets even 
though they are frequently uncountable sets.lg That there is a large class of 
uncountable compact sets in the very important spaces Rk will be shown subse- 
quently. It is not surprising then that compact sets have some very desirable 
features (especially in connection with continuity which is discussed in chapter 
8). Among these is the fact that, in contrast to the properties of being open or 
closed, the property of compactness is independent of the metric space in 
which the set is embedded. The next theorem shows this. 

Theorem 6.19: Let ( X ,  d )  be a metric space, and suppose K C Y C X .  
Then K is a compact subset in the metric space ( X ,  d )  if and only $it is a com- 
pact subset of the subspace ( Y ,  d ) .  

Proof: Let K be a compact subset of the metric space ( X ,  d )  and let {Gala E A }  
be any family of open subsets of the metric space ( Y ,  d )  such that K C u G,. 

It follows from Theorem 6.16 that there is a family {H,)a E A }  of open 
subsets of the metric space ( X ,  d )  such that, for each a E A ,  G,= Y fl H,. 
Since G, C H,, it is obvious that K C u H ,  and, since K is a compact subset 
of the metric space ( X ,  d ) ,  there must be a finite collection of indices, say 
al ,  a2, . . ., a, E A ,  such that 

f f E A  

u E A  

K c H ,  u . . . uH,, 

Because it is also true that K C Y ,  we see 

K c Y n ( H ,  u . . . U H , , ) = ( Y ~ H , ) U  . . . u ( y n ~ , , )  
=G, U . . . U G,, 

This proves that K is a compact subset of the metric space ( Y ,  d ) .  
Now suppose that K is a compact subset of the metric space ( Y ,  d )  and 

let {Hala  E A }  be a family of open subsets of the metric space ( X ,  d )  such 
that K C u H,. For each a E A ,  we define G, by 

u E A  

l9 For a fuller discussion of this point, see ref. 5. 
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G,=Y n H ,  

and Theorem 6.16 shows that every G, is an open subset of the metric space 
( Y ,  d ) .  

Now, since K C u H ,  and K C Y ,  it follows that 
a E A  

K c Y n  UH,  =U ( Y n H , ) =  U G, 
( a E A  ) a E A  a E A  

where one of the distributive laws of table 5-1 has been used. Hence {Gala E A }  
is a collection of open subsets of ( Y ,  d )  which covers K and, since K is a com- 
pact subset of ( Y ,  d )  , there is a finite subcollection of indices, say (XI ,  . . .  . . . , 
a, E A ,  such that 

K E G ,  u . . .  u ~ , , = ( y n ~ , ) u  . . .  u ( ~ n ~ , , )  
= Y ~ ( H ,  u . . . U H , , ) C H ,  u . . . u H,, 

Since {Hala E A }  was any open cover of K in the metric space ( X ,  d ) ,  this 
shows that K is a compact subset of ( X ,  d ) .  

In Theorem 6.19 we can, in particular, let the sets Y and K be the same set. 
Thus, if we prove under certain conditions that the metric space ( K ,  d )  is 
compact, or if some subset E of ( K ,  d )  is compact, we can conclude that, if 
( K ,  d )  is a subspace of X, then K is a compact subset of X or that E is a compact 
subset of X ,  etc. Thus, as a consequence of this theorem, it is sufficient to prove 
many theorems about compact sets only for compact spaces. We might point 
out that although we defined compact metric spaces it would be absurd to define 
a closed or open metric space. After all, every metric space is both a closed and 
an open subset of itself. 

We can use the concept of distance between points in a metric space to 
associate certain “distances” with sets. 

Definition 6.20: Let ( X ,  d )  be u metric space and suppose thut E is a non- 
empty subset of X .  For any  s E X ,  the number lub d(s, p )  is called the distance 

between the set E and the point s. I t  is denoted by d ( s ,  E ) .  The number 
sup d ( p ,  q )  is called the diameter of E and is denoted by d ( E ) .  I f  H is any  

other subset of X we cull the number inf d ( p ,  q )  the distance between the 
P E E  
q E H  

two sets E and H.  I t  is denoted by d ( E ,  H )  . 

P E E  

P , q E E  
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Clearly the diameter of any set is a nonnegative number or + 00. If a set A 
contains more than one point, let p and 4 be any two distinct points of A .  Then 
d ( A )  3 d ( p ,  4 )  > 0. Hence, we conclude that d ( A )  = 0 if and only if A contains 
precisely one point. 

According to the definition, the diameter of a ball inthe Euclidean space 
Rk is equal to twice its radius and the diameter of a k-cell is equal to the length 
of the “diagonal” of the k-cell. 

In the Euclidean plane R2 the distance from a point p to a line L is the 
perpendicular distance from p to L. 

If A is any nonempty subset of the metric space ( X ,  d )  andp and 4 are any 
two points of X ,  then 

(6-14) l a p ,  A )  -4% 4 Id  d(P ,  4 )  

In order to see this, notice that for every t E A 

In precisely the same way we can prove that 

and relation (6-14) follows. 

Definition 6.21: A subset E of the metric space ( X ,  d )  is bounded 8 
there is a finite real number M such that d ( E )  d M .  

It is not hard to show that the bounded subsets of a metric space are just 
those sets which are subsets of the balls (recall that a ball has afinite radius). 

There is a relation between compactness and the properties of being closed 
and of being bounded. 

Theorem 6.22 : Compact subsets of metric spaces are closed and bounded. 
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Proof: Suppose K is any compact subset of any metric space ( X ,  d ) .  We first 
show that K is closed. To accomplish this, we need only prove that K" is an 
open subset of X and apply the corollary to Theorem 6.10. 

Hence fix any point p of K" and, for every q E K ,  let B ( p ;  r,) and B ( q ;  pq) 
be balls about p and q ,  respectively, such that both r, and p, are less than 
d ( p ,  4 ) D .  Now 

K c u B ( 4 ;  P,) 
q E K  

SinceK is compact, there must be a finite number of points of K ,  say q1, . . . , 
q n ,  such that 

K c B(q1; p,J u . - u B k n ;  p,,)=G 

Let r* be the smallest of the numbers r,,, rq2, . . ., rqn. Then 

Now if s is any point of G then, for some j (  1 j d n )  , s E B (qj; ppj). Therefore 
s @ B ( p ;  r q j ) .  Hence, s @ B ( p ;  r* ) .  This shows B ( p ;  I*) n G = @ .  Therefore, 
B ( p ;  r * )  n K= $3; that is, B ( p ;  r * )  C K". Thus p is an interior point of Kc.  
Since p was any point of K", this proves that K" is open. 

We will now show that K is bounded. To thisend consider the collection 
{ B ( p ;  1) Ip E K } .  Since balls are open and K C u B ( p ;  1), it is clear that 

this collection is an open cover of K and, since K is compact, must contain a 
finite subcover; that is, there must be a finite number of points of K ,  say 

P E K  

pi, . . ., pn, such that 

K c B ( p * ;  1) u . . . u B(p,; 1) 
We now define 

d(pi, pj) 1 < t<js 11 

Of course, M=6+2 is a finite number. If q and s are any two points 
of K ,  there must be elements of the set ( p l ,  . . . , p n } ,  say pi and pj, such that 
q E B ( p i ;  1) and s E B ( p j ;  1) (note that we may havepi=pj). Then, 

d(4, s) d ( q ,  pi) + d(pi, pj) + dbj ,  s) 
< 1 + 6 + 1 = M  
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so il4 is finite and is an upper bound of the set { d ( q ,  s) I s ,  q E K } .  Therefore 
the least upper bound d ( K )  of this set must be less than or equal to M which 
proves the theorem. 

The converse of this theorem is b y  no means always true! We shall see 
however that it is true for Euclidean spaces. 

We might point out that the proof of boundedness cannot be restated 
purely in terms of neighborhoods and so the fact that compact sets are bounded 
is a metric and not a topological property. On the other hand, the proof of the 
fact that compactness implies that a set is closed depends only on the fact 
that we can always find for any two distinct points two nonoverlapping open 
sets each of which contains one of the points. Topological spaces with this 
property are called Hausdorff spaces. 

Theorem 6.23: I f  F is a closed subset of a compact subset K of a metric 
space X ,  then F is compact. 
Proof: Let {G, I a E A }  be any open cover of F.  We shall show that it has a 
finite subcover. Since F is closed, F" is open and hence the collection 
R =  {G, I a E A }  U { F " }  is an open cover of K .  Since K is compact, there is 
a finite subcollection r C R which covers K and hence also F C K. If F c  E r, 
then r - { F  "} is still an open cover of F .  But r - { F  "} is a finite subcollection of 
{G, I a E A } ,  and this proves the theorem. 

The following is an almost immediate corollary of this theorem. 
Corollary: I f  K is compact and F is closed, then F fl K is compact. 

Proof: Theorem 6.22 shows K is closed and the second corollary to Theorem 
6.12 shows that K n F is closed. Hence K n F is a closed subset of K and Theo- 
rem 6.23 now shows that K n F is compact. 

Definition 6.24: I f  every infinite subset of a set E has a limit point in E, 
then E is said to be countably compact. 

Theorem 6.25: Compact sets are countably compact. 
Proof: The proof is by contradiction. Hence, let K be compact and let E be an 
infinite subset of K which hss no limit point in K. Then there is a ball B ( q ;  rq) 
about every point q E K which contains no points of E - (q} .  That is, B (4 ;  rq) 
contains at most one point ofE, viz., q if q E E. It is clear that K C avK B ( q ;  rq) , 

355-525 0-70-7 
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and Theorem 6.11 shows that eachB(q; rq) is open. Hence,O={B(q; rq) (qE K }  
is an open cover of K but no finite subcollection of O can cover E.  Evidently 
the same must be true of K for if any finite subcollection of R covered K ,  it 
would also cover E C K. This contradicts the hypothesis that K is compact 
and so proves the theorem. 

We shall now turn to a consideration of some of the properties of intersec- 
tions of compact sets. 

Definition 6.26: A sequence of sets {Fi}  is a nested sequence of 
sets if  

F I > F , > F s I  . . . 

Theorem 6.27: Let {K,Ia! E A }  be a collection of compact subsets of a 
metric space and suppose that the intersection of every finite subcollection 
of {K,la! f A }  is  nonempty. Then (I K ,  is not empty. 

Proof: Set G,=Kg and choose any member, say K1, of {K,Jcx E A } .  The proof 
is by contradiction. Hence assumeacA K,=@. This implies that there is no 

point of K1 that belongs to every K,  for otherwise this point would be in the 

LVEA 

intersection. Hence, K1 C u G,  and the G, are open by Theorem 6.22 and the 
LVEA 

corollary to Theorem 6.10. Thus, {Gala E A }  is an open cover of K1 and, since 
K1 is compact, there are finitely many a's, say ai, . . . , a!,, such that 

K~ c G , ~  u . . . u G , , = ( K , ~  n . . . n K,,)" 

by DeMorgan's law (table 5-1). But this means that 

which contradicts to the hypothesis. 

Corollary: I f  { K i }  is a nested sequence of nonempty compact sets in the 
W 

metric space ( X ,  d ) ,  then K= 

Proof: This follows immediately from Theorem 6.27 and from the fact that 
the intersection of any finite subcollection of { K i }  is just equal to the smallest 
Kj in the collection and, hence, is not empty. 

Ki is also not empty. 
i =  1 
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m n Ii is not empty. 

Proof: Let ai and bi be the left and right ends of Ii, respectively, and let 
A =  {ai 1 i = l ,  2, 3, . . .}. Certainly A is not empty, and it is clear that it 
must be bounded-above by b1. By axiom I11 of chapter 2 (see p. 18), lub A 
exists. Hence let a-lub A. If i and j are any two positive integers, it is clear that 

Theorem 6.28: If { I i }  is a nested sequence of intervals (in R1), then 

2 =  1 

ai d ai+j G bi+j G bj 

Hence, for every i ,  ai s bj; that is, bj is an upper bound for A for each integer j. 
It follows from Definition 2.2 that lub A = a  d bj and aj G a. Evidently a E Ij 

for every j which shows that a E (-l I j .  
X 

j =  1 

We can easily generalize this theorem to k-cells in R k .  

Theorem 6.29: I f  { I i }  is a nested sequence of k-cells ( i n  Rk) , then (I Ii 
X 

i =  1 is not empty. 

Proof: Definition 6.3 shows that for each i there are k intervals, I i ,  1,  I i ,  2 ,  . . . , 

Now it is clear that the condition 

implies 

Hence, for each fixed j ,  { I i , j }  is a nested sequence of intervals and the pre- 
ceding theorem shows that there is a real number aj E I i , j  for every 
i = l ,  2, 3, . . . So if we set a*= ( a l ,  a2, . . ., ak) ,  it is clear that, for every 

i =  1, 2, 3, . , . , a* E Ii which shows that a* E n Ii .  
X 

i = l  
We shall now use this theorem to prove a very important fact about R”. 
Theorem 6.30: All k-ceZZs are compact. 

Proof: Suppose Q is an arbitrary k-cell. Definition 6.3 shows that there are 
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real numbers ai and bi for 1 6 i d k such that Q =  X [ai, bi]. Now we see 

that (from the definition of the norm in the Euclidean space R k ) ,  for any 
x ,  y E Q with x= (XI,. . ., xk) and y= (yl, . . . , yk)  

k 

(d(Q) is the length of the "diagonal" of Q) . Now suppose we are given a k-cell 

k 

i =  1 
Qo= X [a:, bp] (6- 15) 

and suppose in order to arrive at a contradiction that we can find some collec- 
tion of open sets {Gala E A }  which covers Qo and which contains no finite 
subcover. The numbers cy= (a!+ b ! ) / 2  (for 1 d i d k) lie between a! and by. 
By replacing some of the intervals in equation (6-15), say [a& b:l], . . ., 
[a!!, b & ] ,  by the intervals [a:, c ,? , ] ,  . . ., [aio,, c&] and the remainder, say 
[ayn+l, b t z + l ] ,  . . ., [a& b t k ] ,  by the intervals [ct,, , b\+, 1 ,  . . ., [cyk, b ; J ,  we 
can form 2k  different k-cells whose union is QO, and each of them has the length of 
its diagonal equal to half the length of the diagonal of Qo. We can find at 

least one of these k-cells which we denote by Q1= x [a:, b i ]  that cannot be 

covered by any finite subcollection of {Gala E A }  for if they all could be so 
covered then so could Qo. Hence we have Q' C QO, d(Q1)=+d(Qo), and Q1 is 
not covered by any finite subcollection of {Gala E A } .  Having obtained the 
k-cells 

k 

i - 1  

Qo3Q13 . . . > Q "  
k 

i =  1 
Q j = X  [a:, bj] O S j S n  

none of which can be covered by any finite subcollection of {Gala E A }  and 
for which d(Qj)=(1/2j)d(Qo) for 1 d j d n ,  we can define c r = ( a ~ + b r ) / 2  
(1 5 i d k)  and form the intervals [a?, cr] and [c?, bF] (1 S i S k) .  From 
these intervals we can, in the same way as just described, form Z k  different 
k-cells whose union is Q*I, and each of these cells has the length of its diagonal 
equal to (l/Z)d(Q"). Again one of these k-cells, say QR+l, cannot be covered by 
any finite subcollection of {Gala E A }  and Qn+l C Qn,  so that d(Qn+l) 
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= ( 1 / 2 ) d ( Q n )  = (1 /Zn+l )d (Q0) .  In this way we construct a nested sequence of 
k-cells {Qrt }  such that none of these can be covered by any finite subcollection 
of {Gala! E A }  and such that, for any positive integer n,  the condition x, y E Q” 
implies Ix-yl d C ~ ( Q ? ~ ) =  (1/2n)d(Q0).  This method of construction of anested 
sequence of k-cells is illustrated in figure 6-3 for k= 2. 

FIGURE 6-3.-Nested sequence of 2-cells. 
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Theorem 6.29 now shows that there is a least one point a such that, for 
every n, a E Q". Since {Gala E A }  covers QO, there must be at least one a,  
say acl, such that a E Gal. Since Gal is certainly an open set, there exists a ball 
B(a; r )  abouta such that B(a; r )  C Gal. Now choose m so large that 2-'"d(Qo)< r. 
(If there were no such m, then for every positive integer p we would have 
2p d d(Qo)/ rwhich is absurd.) Now )a-y) ( 1/Zm)d(Qo)  < r for every y E Qm. 
This shows that Q" C B(a; r )  C G,, which contradicts the conclusion that 
Q" cannot be covered by any finite subcollection of {Gala E A } ,  and this proves 
the theorem. 

We have seen from Theorem 6.22 that in metric spaces compact sets must 
be closed and bounded, but it was pointed out that the converse is not always 

*true. It is a very important fact that in Euclidean spaces, however, the com- 
pactness of a set is equivalent to its being closed and bounded. This is the 
statement of the well-known theorem called the Heine-Bore1 theorem. 

Theorem 6.31: A subset of the Euclidean space R k  is compact if and 
only if it is closed and bounded. 

Proof: Theorem 6.22 of course shows that every compact set is closed and 
bounded. Therefore we need only prove that every closed and bounded subset 
of R k  is compact. But every bounded subset of Rk  must be contained in some 
k-cell. Since Theorem 6.30 shows that this k-cell must be compact and since 
Theorem 6.23 shows that closed sets contained in compact sets are themselves 
compact, the assertion is proved. 

There is another well-known theorem, the Bolzano-Weierstrass theorem, 
which also follows easily from the fact that k-cells are compact subsets of R k .  

Theorem 6.32: Every bounded infinite subset of the Euclidean space R k  
has a limit point in Rk. 
Proof: Let E be a bounded infinite subset in R k .  Since E is bounded we can 
find a k-cell Q such that E C Q. Theorem 6.30 shows that Q is compact and 
Theorem 6.25 then shows that it is therefore countably compact. This means 
that E has a limit point in Q and therefore also in R k .  

Definition 6.33: A metric space is called separable if  it contains a 
countable dense subset. 

Theorem 6.34: The Euclidean space R k  is separable. 

96 



METRIC SPACES 

Proof: Let S be the set of all points of the Euclidean space R k  whose coordi- 
nates are rational numbers. It follows from Theorem 5.3 and its corollary that 
S is countable. We shall show that S is dense in Rk. To this end,iletp= ( P I ,  p2, 
. . . , p k )  be any point of R and let B (p;  r )  be any ball about p. The axiom of 
Archimedes (chapter 2) shows that for each i such that 1 d i < k there exists a 
rational number yi such that 

Hence 

(6-16) 

Set y= (yl, . . ., y k ) .  Clearly y E S. It follows from inequality (6-16) that 

Hence y E B(p;  r ) .  Since B(p;  r )  was any ball about p ,  we have shown that 
every ball about p contains a point of S and therefore that p is an adherence 
point of S. Since p was any point of Rk,  we conclude that S is a dense subset 
of Rk.  

Definition 6.35: Let E be a subset of the metric space ( X ,  d )  and let 
E be any  positive number. A set D, C X is called a n  enet for the set E if for  
any point p E E ,  there exists a point x E D, such that d (x, p )  < E .  I f  E = X ,  then 
D ,  is said to be a n  d e n s e  subset of X .  

It is clear that D, is an €-net for the set E if and only if 

E C  u B(x; E) 
X E D ,  

For every positive integer n,  the set 

is a p( fi /2n+1)-dense subset of Rk for any p > 1. A. p( fi /2n+1)-dense subset 
of R 2  is illustrated in figure 6-4. 
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0 0 l o  0 0 

0 t 0 0 

FIGURE 6-4.-@( f i /2n+1)-Den~e  subset of R 2  with balls of radius p( f i / Z n + l )  about points 
of @(fi/2n+1) -net for p slightly greater than 1. 

Definition 6.36: A subset E of a metric space is said to be totally 
bounded i f  f o r  each positive number E there is a finite €-net f o r  E. 

It is clear that, for every k-cell in R k ,  there is a finite subset of the 
p( f i / 2 " + ' )  -dense set just described which is a p( f i / 2 1 1 + 1 )  -net for this k-cell. 
This in fact shows that k-cells are totally bounded. 

Since every bounded set in Rk is contained in some k-cell we see that in 
R k  bounded sets are totally bounded. It is not hard to see that in any metric 
space totally bounded sets are bounded. Thus in Rk  boundedness and total 
boundedness are equivalent. This is not however true in general. It turns out, 
although we shall not be able to go into this here, that in the cases of most in- 
terest for the function spaces which we shall discuss in chapter 11, bounded- 
ness and total boundedness are not equivalent. 

The material in the remainder of this chapter is not necessary for under- 
standing the rest of the text. 
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Theorem 6.37; A metric space is separable i f  and only if it contains a 
countable €-dense subset f o r  every positive number E .  

Proof: If D is a countable dense subset of the metric space ( X ,  d )  then for 
any point p E X and for any E > 0 there is a point x E D such that x E B ( p ;  E ) .  
Hence, d ( p ,  x) < E which shows that D is a countable €-dense subset. 

Conversely, suppose there is a countable €-dense subset in X for every E ,  

and for each positive integer n let D ,  be a countable l/n-dense subset of X .  
According toTheorem 5.2, D =  u D ,  is a countable set. Now, if p E X  and 
E > 0 are given, choose an integer n such that n > 1 / ~ .  Then there is a point 
x E D ,  ( and hence also in D )  such that d ( x ,  p )  < l / n  < E .  Hence, x E B ( p ;  E )  

which shows that D is a countable dense subset of X .  

m 

n= 1 

Corollary: I f  a metric space is totally bounded, it is also separable. 

Definition 6.38: Let {Gala E A }  be a fami ly  of open sets in a metric 
space X .  I f  for  every open set V C X there is a subset C of A such that V = U G,, 
then {Gala E A }  is said to be a base for the open sets of X .  f f € C  

Theorem 6.39: There is a countable base fo r  the open sets in the metric 
space X if and only i f X  is separable. 
Proof: Let X be separable, let M be a countable dense subset of X ,  and let 

R =  { B ( x ;  l / n )  I (x, n )  E M X J }  

where, as usual, J is the set of positive integers. Theorem 5.3 shows that M X J 
is countable. Hence R is a countable collection of open sets. Fix an open set 
V C X .  Put C = { ( x ,  n)IB(x;  l / n )  C V }  and W= U B ( x ;  l / n ) .  Evidently, 

W C V. Now let p be any point of V. Because V is open, there is a ball 
B ( p ;  E )  C V. Choose a positive integer n > Z / E .  The fact that M is dense shows 
that there is a y E M such that y E B ( p ;  l /n) .  If t E B ( y ;  l / n ) ,  then 

( x ,  n)  E c 

Hence t E B ( p ;  E ) ,  and so 
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Since d ( p ,  y) < l / n ,  we see p E B ( y ;  I/.). The fact that B ( y ;  l / n )  C Y and 
that (y, n )  E M X J shows that B ( y ;  l / n )  C W. 

Therefore p E W and, since p was any point of V ,  this shows that Y C W. 
So we conclude that W= V and, since V was any open set, this shows that Cl 
is a countable base for the open sets of X .  

Now let Cl= {G, I o! E A }  be a countable base for the open sets of X .  LetM 
be the set which consists of exactly one point from each nonempty G, E a. 
Then M is countable. Fix any point p E X and let E be any positive number. 
The fact that B ( p ;  E) is an open set shows that there is a subset C of A such 
that B ( p ;  E) = u G,. Then, for some P E C, p E Gp. Hence Gp is not empty 

o l E C  

and therefore, by construction, there exists a point y E M such that 
y E Gp C B ( p ;  E). Since E was arbitrary, this shows that p is an adherence 
point of M. Because p was any point of X ,  this implies that M is a countable 
dense subset of X .  

We have actually proved more than the statement of the theorem. We 
have shown that the countable base can always be chosen so that its members 
are balls. Since Theorem 6.34 shows that the Euclidean space R 1  is separable 
and since the balls in R 1  are segments, we conclude that every open set in R 1  
is the countable union of segments. 

The next theorem is known as the Lindelof covering theorem. 

Theorem 6.40: I f  {Gala E A }  is any  fami ly  of open sets in the separable 
metric space X ,  there is a countable subset D C A for  which 

Proof: Choose a countable base R =  {H,In E J }  for the open sets of X .  Set 

N = { n  E JI(3a E A )  for which H ,  C Ga} 

We can define a functionf: N + A  as follows: for each n E N ,  there exists at 
least one /? E A such that 

Pick one such P and set 
Hn C GP 

f (4 = P  
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Then f ( N )  is evidently countable and 

If p E u G,, there is some index y E A such that p E Gr. Since Gr is 
open, it is the union of some subfamily of a. Hence we can find a set H ,  E 0 
such that p E H ,  C Cr. This shows that m E N .  Thus, p E H ,  C Gf(m) C u G,. 
Therefore, since p was arbitrary, 

c l € A  

a E f W )  

U G a  C U Ga 
CYEA a E f ( N )  

As a result of this theorem, we are now able to show the relation between 
compact spaces and separable spaces. 

Corollary: Every open cover of a separable metric space has a countable 
subcover. 
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CHAPTER 7 

Limits of Sequences 
The concept of limit dates back to the early Greek mathematicians. Our 

modern understanding of this concept, however, is principally due to Cauchy 
(1821) whose work, like Cantor’s, grew out of a study of trigonometric series. 
Frkchet later incorporated Cauchy’s notion of the limit of a sequence of points 
into his theory of metric spaces. Indeed, much of the material in this chapter 
is an outgrowth of this development. 

Intuitively, the point p is a limit of a sequence 2o {pn} if P n  is “close” to 
p whenever n is sufficiently large. This idea is made precise in the next two 
definitions. 

Definition 7.l(a): Let {pn} be a sequence in the metric space X and let 
p be a point of X .  The sequence (p,)  is said to converge to p if, for every E > 0,  
there is a positive integer N such that n N implies that 

Pn E B ( P ;  E) 

Then p is called the limit of {pn} (we shall see that the limit is unique), and 
we write 

P n - P  
or 

lim pn=p 
n+ m 

If there exists no point p E X to which the sequence converges, it is said to 
diverge. 

We may restate the definition of convergence in the following way. 

Definition 7.l(b): I f  { p n )  is a sequence in the metric space ( X ,  d ) ,  a 
necessary and suficient condition that p=  lim P n  is that, for  every E > 0, there 

n--t m 

2o See Definition 4.15. 
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exists an integer N such that n N implies 

We shall have occasion to use both forms of the definition of convergence. 
Notice that Definition 7.l(b) shows p n 4  p if and only if the sequence of real 
numbers { d ( p n  , p )  } converges to zero. 

It can be seen from the discussion following Definition 6.1 that, when 
applied to a sequence of complex numbers { zn} ,  Definition 7.1 means that 
{ Z n }  converges to a complex number 5 if and only if, for every E > 0, there is 
a positive integer N such that for all n > N 

l z n - 5 1  < E 

Z n  E (21 12-51 < E }  

or, equivalently, 

Thus, for every E ,  there is a finite number N such that all the terms of {z,} 
except the first N -  1 must lie in the interior of a circle of radius E .  The concept 
of convergence of a sequence of complex numbers is illustrated in figure 7-1. 

2 1  

FIGURE 7-1. -Convergent sequence of complex numbers. 
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The definition of convergence depends strongly on the metric space to 
which the sequence is assumed to belong. Suppose ( X ,  d )  is a metric space, 
E C X and {pn} is a sequence in E. Then it may happen that the sequence 
converges in the metric space ( X ,  d )  to a point p e E and therefore does not 
converge in the metric space ( E ,  d )  (which has the same metric as ( X ,  d ) ) .  
For example, if d is the usual metric for R’, the sequence { l / n }  converges to 
0 in the metric space ( R l ,  d ) .  But if E = { x  E Rllx > 0), this sequence does 
not converge in the metric space ( E ,  d ) .  Hence, when a sequence is said to 
converge, the metric space in which it converges should be specified. This 
will only be done, however, in cases of possible ambiguity. On the other hand, 
if {p,} is a sequence of points in a subset E of a metric space ( X ,  d )  and if 
this sequence converges to a point p E E as a sequence in the metric space 
( X ,  d ) ,  it also converges to p as a sequence in the metric space ( E ,  d ) .  

It is sometimes said that the convergence of a sequence depends on the 
“infinite tail” of the sequence. This means that no amount of alteration of a 
finite number of terms of a divergent sequence can make it converge and, if 
a convergent sequence is changed by omitting or adding a finite number of 
terms, the resulting sequence still converges to the same limit as the original 
sequence. 

Recalling Definition 4.15 we see that a sequence {pn} in a set X is just 
a function f: J + X  (where J is the set of positive integers) such that, for each 
n E J ,  f ( n )  =Pn.  The range of the sequence {pn} is just the range of the func- 
tion f-that is, the set of all the points P n .  This set may be finite or infinite. 
In particular, it may consist of one point p (i.e., for every n,  p f l = p ) .  We shall 
sometimes use the notation p ,  p ,  p ,  . . . for sequences of this type. It is 
clear that such sequences always converge. They are called constant sequences. 
In fact, any sequence that becomes a constant sequence upon the omission 
of a finite number of terms converges. 

Definition 1.2: If the range of a sequence is a bounded set, the sequence 
is said to be bounded. 

Let us look at a few sequences in R (with the usual metric). The sequence 
{nz} is unbounded and diverges, and its range is an infinite set. On the other 
hand, the sequence { I t  ( - l ) f l / n }  converges to 1 and is bounded, and its 
range is also an infinite set. Finally the sequence { (- 1) ”} diverges; yet it is 
bounded, and its range is a finite set. 

It follows from Definition 7.l(a) that, if {pn} is a sequence in a metric space 
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X ,  thenp.+ p if and only if, for each neighborhood V ofp ,  there exists a posi- 
tive integer N such that Pn E V as soon as n 3 N .  This can be seen by reasoning 
as follows. Since all balls are neighborhoods, we see that if, for a given sequence 
{pn},  we can find for each neighborhood V of a point p an integer N such that 
pn E V for all n a N ,  then certainly Definition 7.l(a) is satisfied. On the other 
hand, if V is any neighborhood of p and Pn + p ,  then, since V is open, we can 
always find an E > 0 such that B ( p ;  E )  C V. And, for this E ,  we can find an N 
such that n a N implies Pn E B ( p ;  E )  C V. This shows that convergence could 
have been defined by using only the concept of open set (neighborhood), and 
so it is a topological property. 

We shall now prove that the limit of a convergent sequence is unique. 

Theorem 7.3: I f  { p n }  is a sequence in the metric space ( X ,  d ) ,  there is 
at most one point p such that lim Pn=p. 

n + m  

Proof: Suppose p ,  q E X and pn + p and P n  + q. Then, for every E > 0 there are 
positive integers N1 and Nz such that, whenever n 2 N1, d(pn ,  p )  < €12, and 
whenever n 2 N z ,  d(pn ,  q )  < €12. Set N =  max { N l ,  N2).  Then, for every 
n a N ,  

Since E is any positive number, we conclude that d ( p ,  q )  =0,  and this shows 
that p = q. 

d ( p ,  q )  d ( p ,  Pn) +d(pn ,  4 )  < E l 2 + E / 2 = E  

The simple principle used in this proof, namely that the only nonnegative 
number which is less than every positive number is zero, is a very useful one, 
and we shall encounter it frequently. 

Theorem 7.4: If E is a subset of a metric space ( X ,  d ) ,  then the point 
p E X is a n  adherence point of E if and only $there is a sequence {pn} in E such 
that p =  lim pn. 

Proof: If l imp,=p,  then Definition 7.l(a) shows that every ball about p 
contains a term of the sequence (pn} .  Since every term of {pn} is a point of E ,  
this proves that p is an adherence point of E. Now suppose p is an adherence 
point of E. Then every ball about p contains a point of E. So for each positive 
integer n choose a point Pn of E such that Pn E B ( p ;  I/.). The sequence {pn} 
so obtained evidently converges to p for, if E > 0 is given, we can choose a 
positive integer N such that NE > 1 and, for every n b N ,  

n--t m 

n-+m 

P n  E B ( p ;  l ln) c B ( p ;  E )  
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The statement of Theorem 7.4 is sometimes used as the definition of adher- 
ence point. The remarks immediately following Definition 6.7 show that a 
closed set contains all its adherence points. Thus we have the next corollary. 

Corollary: Every convergent sequence in a metric space X with terms in a 
closed subset E of X converges to a point of E.  

In the following theorem, as in most theorems about boundedness, we 
make explicit use of the fact that the distance between any two points of the 
metric space is finite. It therefore does not hold in metric spaces with possibly 
infinite metrics. 

Theorem 7.5: Every convergent sequence (pn} in a metric space ( X ,  d )  
is bounded. 

Proof: Since there is a point p such that P n  + p ,  we can find a positive integer 
N such that n 3 N implies 

P n  E B ( P ;  1 )  
Now set 

p=max { 1 , 4 P l ,  P ) ,  d(PN, P I )  

Since p is the least upper bound of a finite set of finite numbers, it is also 
finite. Then, for every positive integer n 

That is, if E is the range of {pn},  then 

Now for any two points x, y E E 

Hence, 2p is an upper bound of the set { d ( x ,  y) Ix, y E E}.  Therefore the least 
upper bound of this set d ( E )  must be less than or equal to the finite number 
2p. This shows that the sequence {pn} is bounded. 

Theorem 7.6: I f  (pn )  is a sequence in  the metric space X ,  then (p l l>  con- 
verges to a point p € X $and only if every ball about p contains all but a finite 
number of terms of {pit}. 
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Proof: Suppose {pn> converges to p .  Let B ( p ;  E )  be any ball about p ,  Then 
there is a positive integer N such that the only terms of {pn} possibly not in 

Conversely, suppose that every ball about p contains all but finitely many 
terms of {pn} and E > 0 is given. Set N ' =  max { n E J IPn e B ( p ;  E ) } ,  and 
put N = N ' +  1. Then P n  E B ( p ;  E )  for all n 2.N. 

B ( P ;  E )  are P I ,  P Z ,  . . .) P N - 1 .  

In order to study the relation between convergence and algebraic opera- 
tions, we turn to the normed linear spaces introduced in chapter 3. As we men- 
tioned in chapter 6, the metric in these spaces will always be given in terms 
of the norm by equation (6-1). 

The next theorem shows the relation between addition and scalar multi- 
plication on the one hand and convergence on the other. 

Theorem 7.7: Suppose { u n >  and {vn)  are sequences in the normed linear 
space V and { a n >  is a sequence of scalars (i.e., real or complex numbers de- 
pending on whether V is a real or complex vector space). If 

lim vn=v 

lim an=a 

n-+m 

n j m  

then, 
(a) lim n+m (un+vn)=u+v 

(b) lim ( P U n )  =Pu 

(e) l i i  ( w + u n ) = w + u  

(d) lim (anun)=Qu 

f o r  every scalar P 
n--= 

f o reveryw  E Y 

n-m 

Proof: Part (a). Given E > O ,  there exist positive integers N 1  and N2 such 
that n < 4 2 .  Set N=max 
{NI ,  N z } .  Then n 3 N implies 11 (un + v,) - (u + v)ll S llun - uIJ + Ilvn - 

Part (b). First suppose P # 0. Then given E > 0, there exists positive integer 
N such that n z N implies llUn - u I I  < E / ( P ~ .  Hence 

N1 implies 1\un - uI1 < 4 2  and n 2 Nz implies Ilvn - 
< E .  

l l P ~ ~ - P ~ l l = l l P ( ~ n - ~ ) l l =  (PI llu?i-uII < E 

If P = O ,  the result is trivially true. 
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Part (e). Trivial. 
Part (d). Suppose a # 0 and u # 0. Then, by (Nl) of Definition 3.4, llull 

# 0. We shall use the identity 

&& E E 

v3v3 3 3 
<--+-+-=e 

The proofs for the cases when a= 0 or u= 0 follow easily from the fact 
that a convergent sequence must be bounded and from part (b). 

Since the complex numbers themselves form a complex normed linear 
space, it is an immediate consequence of part (d) of this theorem that, if 
{ a n }  and { P n }  are sequences of complex numbers such that a n +  a and 
Pn-+ P ,  then 

anPn  -+ 

In the case of complex numbers, we can moreover deduce a relation 
between division and convergence. 

Theorem 1.8: Suppose { S n }  is a sequence of complex numbers such that 
lim S n = S ,  S n  # 0 for n= 1 ,  2, 3 ,  . . . and s # 0. Then lim l/sn= 11s. 

Proof: Since Is1 + 0, let us choose m so large that ISn-SI < lsl/Z whenever 
n 3 m. Since 

it follows that 

n-= n+ m 

+ \ S I  > IS -Sn l  3 - lsnl 

lSnl > + I S /  n 3 m  

Given E > 0, there is an integer N > m such that n 2 N implies 
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Hence, for n b N, 

In the Euclidean spaces Rk,  there is an intimate relation between the 
convergence of sequences of vectors and the convergence of their components. 

Theorem 7.9: (a) Let ( X ,  d )  and ( Y ,  8) be metric spaces. Let {pn} be a 
,sequence in X and {qn} be a sequence in Y. Then the sequence { ( p n ,  qn)} con- 
verges in ( X X Y ,  d,)  the direct product of ( X ,  d )  and ( Y ,  s), $andonly$ 
{pn} converges in X and {qn) converges in Y. In addition 

whenever the limit exists. 
(b) Let {Xn), with X n =  (Xl,n, . . ., Xk,n) f o r  every positive integer n, be 

a sequence in the Euclidean space Rk. Then { x n }  converges to a point 
X = ( X I ,  . . ., xk) of Rk if and only if 

Proof: Part (a). First suppose that Pn -+ p in X and qn +- q in Y. Let E > 0 be 
given. Then there exist integers N 1  and N2 such that for all n 2 N1 and all 
m 3 N 2 ,  d b n ,  P >  < E and d ( q m ,  q )  < E. Set N=max { N 1 ,  N2}. Then for each 
n >iV we have 

Conversely, suppose that ,Il% (pn ,  qn) = ( p ,  q )  in ( X  X Y ,  d , ) .  Then there 
exists an integer N such that for all n 3 N 

Hence, for all n 2 N, d ( p n ,  p )  < E and d(qn ,  q )  < E ;  that i ~ , p n + p  and qn+ 4. 
Part (b). Suppose first that lim X n  = x. It is easily seen from the definition 

of the norm in Rk  that 
n + m  
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Now for every E > 0 there is an integer N such that n b N implies 

I ~ j , ~ - x j l  d Ixn-xI < E 1 < j s  k 
which shows 

lim Xj,n= xj  
n+m 

On the other hand, if 
lim xj,n= xj for 1 d j d k 
n+m 

then for every E > 0 there is a positive integer N such that n B N implies 

Therefore, whenever n B N ,  

and this shows that 
lim Xn=X 
n+m 

Since the absolute value of a complex number is the same as the norm 
of the corresponding vector in the Euclidean space R2, the following is an 
immediate corollary of this theorem. 

Corollary 1: I f  { z n }  is a sequence of complex numbers, then { z n }  converges 
to the complex number 5 if and only i f  

l i m a  zn=% 5 
n-+ m 

lim Nm Zn = SL 5 
n-+ 

The next corollary is an immediate consequence of Theorems 7.7 and 7.9. 

Corollary 2: Suppose { x n }  and { y n )  are sequences in R” and X n d  x 
and Y n  + y. Then 

X n  * y n +  X ‘ Y  
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It follows from Theorem 7.5 and the example following Definition 7.2 
that convergent sequences are indeed bounded but, on the other hand, bounded 
sequences need not converge. Since it is very desirable to be able to assert 
that the limit of a sequence exists without knowing what it is and since bounded- 
ness of a given sequence is often easy to establish, it is fortunate that there 
is at least one important case in which boundedness is equivalent to con- 
vergence. This occurs in the case of monotone sequences which we now define. 

Definition 7.10: A sequence of real numbers {sn} is said to be increasing 
or monotonically increasing if, for  every pair of integers m and n, m > n 
implies Sm > sn. It is said to be decreasing or monotonically decreasing 
if, for  every pair of integers m and n, m > n implies Sm d Sn. W e  call a sequence 
monotone or monotonic if it is either increasing or decreasing and, when 
only the inequality signs hold in the definition (e.g., Sm > s n ) ,  the adverb 
strictly is used to indicate this. 

Theorem 7.11: A monotone sequence {sn} converges if and only if it 
is bounded. 

Proof: We shall give the proof only for the case of increasing sequences since 
the proof is completely analogous in the other case. Hence suppose Sm 2 s n  
whenever m > n,  and let E be the range of {sn}. SinceE is bounded, its least 
upper bound s exists. Thus, for every integer n, 

Let E > 0 be given. Since s - E is not an upper bound of E ,  there exists a 
positive integer N such that 

S - E  < s N G S  

It follows from the definition of an increasing sequence that n 3 N implies 
Sn 2 s , ~ ,  and since s is an upper bound of E ,  we conclude that 

for all n 3 N which shows that {sn) converges to s. The converse is already 
given by Theorem 7.5. 

We have in fact proved slightly more than the statement of the theorem; 
that is, we have proved that the series converges to the least upper bound of 
its range. 
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There is a natural way o f  extending the definition o f  convergence o f  
sequences in the Euclidean space R‘. The set R’ o f  finite real numbers with 
the usual metric is a metric space (with a finite metric) embedded in the set 
o f  extended real numbers. The set o f  extended real numbers however cannot 
be made into a metric space with a finite metric by simply extending the usual 
metric for R1. We might however still attempt to extend the concept o f  ball 
to the set o f  extended real numbers. Very crudely speaking, we may think o f  
the real numbers as lying along a line with the points +m and --m at its ends. 
Then all the finite numbers would be to the left of the point +m. Now since 
balls in R 1  (with the usual metric) are segments and since each ball about a 
point p also contains p ,  it is natural to take the “balls” about the points + co 
and --CO to be the half-open intervals ( a ,  +a] and [-m, b ) ,  respectively, 
where a and b are finite real numbers. Now if we wish to allow the points 
+a and --CO to be possible limits of sequences offinite real numbers, we can 
give a definition o f  convergence o f  these sequences similar to Definition 7.l(a) 
but which uses the extended concept o f  ball. In this way we allow sequences 
o f  points o f  the Euclidean space R 1  to “converge” to points which lie outside 
this space. We can thus extend the concept o f  convergence in a natural way 
to certain types o f  divergent sequences. All sequences which are convergent 
(in the sense o f  Definition 7.l(a) or equivalently Definition 7.l(b)) would still 
be “convergent” in this extended sense. It must be emphasized however that 
this does not change the definitions of convergence and divergence already 
given. Only those sequences of points of the Euclidean space R’ which converge 
in the sense of Definition 7.l(a) or Definition 7.l(b) are said to converge. The 
sequences which would “converge” in this extended sense but not in the sense 
o f  Definition 7.l(b) will still be called divergent sequences. In view o f  this 
discussion we make the following definition. 

Definition 7.12: If ( s n }  is a sequence offinite real numbers such that, 
for every finite number M ,  there is a positive integer N such that n b N implies 
S n  > M ,  we say (s n }  diverges to 4- 00 and write 

If, on the other hand, for every finite number M ,  there is a positive integer 
N such that n Z- N implies S n  < M ,  we say ( S n )  diverges to - and write 
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In either case, we say that {sa} converges improperly or is improperly 
convergent. 

for certain types of divergent se- 
quences, as well as for  convergent sequences, but the notation lim Pn=P is 
used only fo r  convergent sequences. 

Notice that we now use the symbol 

n-+m 

Theorem 7.13: If E is a nonempty set offinite real numbers, then there 
is a sequence {sa} in E such that Sn-J  lub E. Of course a similar result holds 
for  glb E. 
Proof: Set t= lub E. Then t is either finite or + m. Assume first that t is 
finite. Let E > 0 be given. Then t -  E is not an upper bound of E. Hence we 
can find an s E E such that 

t - - E < S d t < t + €  

So we conclude that every ball about t contains a point of E which means 
that t is an adherence point of E .  The statement of the theorem now follows 
from Theorem 7.4. 

If t =+ a, then E is not bounded above. Hence, for every positive integer n, 
choose a point sa E E such that sa > n. In this manner, we obtain a sequence 
{ s a }  in E such that, if M is any finite number and N is the smallest positive 
integer larger than or equal to M ,  then sn > M for all n 2 N ;  that is,sn++W==t. 

We might point out that, if { S n }  is an increasing sequence which is not 
bounded above, then, for every finite number M we can find a member, say 
sN, of the sequence such that sN>M. So we conclude from Definition 7.10 
that sa > M for every n 2 N ;  that is, sa--, + m. Since a similar conclusion 
holds for decreasing sequences, we arrive at the following result. A monotone 
sequence either converges or it converges improperly. 

We have in a sense associated limits with certain types of divergent 
sequences of real numbers. We shall now see that in the more generd setting 
of metric spaces there is under certain conditions another method of asso- 
ciating limits with sequences even though they diverge. We first introduce the 
notion of subsequence. 

Definition 7.14: If (pak)is  a sequence of points in a set X and n l ,  n2, 

m, . . . is a strictly increasing sequence of positive integers, then the 
sequence (pa,} is called a subsequence of {pn}.  
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Thus, for example, let the sequence {pn} be defined by 

Pn= ( a + l / n ) 1 / 2  for n=1,  2 ,  3, . . . 
and let the strictly increasing sequence of positive integers { n,} be defined by 

n,~=2k for k = l ,  2 ,  3, . . . 

Pn,= (a+1/2k) ' l2  fork= 1, 2 ,  3, . . . 

is a subsequence of {pn}.  
If every ball about a point p of a metric space contains all but finitely many 

terms of the sequence { p n } ,  the same must be true for any subsequence 
{pn,} of {pn}.  Thus Theorem 7.6 and the fact that {pn} must be a subsequence 
of itself show that a sequence {pn} in a metric space X converges to a point 
p E X i f  and only i f  every subsequence of { P n }  converges to p .  

It is clear that, if {Pnk} is a subsequence of {pn} and {Pn  } is a subse- 
quence of {pn,}, then {pnkj}  is also a subsequence of { p n } .  

Evidently if E is the range of a sequence {pn}  and {pnk} is a subsequence 
of {pn} ,  then {pn,} is a sequence in E. However, it is not true in general that 
every sequence in E is a subsequence of {pa}.  For example, the constant 
sequence 1, 1, 1, . . . is a sequence of points in the range of the sequence 
{ l / n }  which is not a subsequence of { l /n} .  

The following definition now shows how we can associate limits with 
divergent sequences. 

'"j 

Definition 7..15: Let {pn,} be a subsequence of the sequence {pn)  in 
the metric space X .  I f  { p n J  converges, its limit is called a subsequential 
limit of {pn}.  

The remarks following Definition 7.14 combined with Theorem 7.4 show 
that if p is a subsequential limit of a sequence (PrL}  then p is an adherence 
point of the range E of {pn}.  Thus if F is the set of all subsequential limits of 
{pn} we have 

F C E  

However, the reverse inclusion does not in general hold. The next theorem 
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shows that we can assert 
E T F C E  

Theorem 1.16: Let E and F be, respectively, the range of the sequence 
{pn} and the set of all subsequential limit points of the sequence {pn} in the 
metric space ( X ,  d ) .  Then (a )  every limit point of E belongs to F and (b)  F is 
closed. 

Proof: Part (a). If p is a limit point of E ,  Theorem 6.9(a) shows that every 
ball about p contains infinitely many terms of {pn}.  We construct a subse- 
quence of {pn} inductively as follows: Choose nl to be any of the infinitely 
many indices n for which d ( p n ,  p )  < 1. Having chosen nl < n2 < . . . < n k - 1  

with d ( p ,  p i )  < l / i  for 1 d i 6 k -  1, choose n k  from the infinitely many n for 
which d ( p ,  P n )  < l / k  to be the smallest such n which is larger than nk--1. 

Thus {pn,} is a subsequence of {pn} such that, for any E > 0, d ( p ,  p,,) < E 

for every k 3 l / ~ .  Hence Pnk+ p. This shows that p E F.  
Part (b). If p is a limit point of F ,  then, for every E > 0 there is a point 

x E F such that 
0 < d ( x ,  p )  < E / 2  

Since x is a subsequential limit of {pn},  there is a point Pk E E such that 

From these two inequalities we see that pk # p and 

Since E was arbitrary, we conclude that every ball aboutp contains a point 
of E - ( p ) .  Hence p is a limit point of E and part (a) shows that p E F .  Since p 
was any limit point of F ,  this shows that F is closed. 

Definition 7.17: If every sequence in a set E has a subsequence which 
converges to a point of E ,  then E is said to be sequentially compact. 

Theorem 7.18: Every countably compact set K is sequentially compact. 

Proof: Let E be the range of a sequence {pn}  with values in K .  If E is a finite 
set, then the proof is easy for there must be at least one point of E C K ,  sayp, 
and a strictly increasing sequence of integers {ni} such that 
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This subsequence evidently converges to p E K. 
Hence suppose E is infinite. Then E has a limit point p E K .  Hence Theorem 

7.16 shows that p is a subsequential limit of {pn}.  That is, there exists a sub- 
sequence {pni}  of {pn}  which converges to p E K .  

Theorem 7.19: If every sequence in a subset E of a metric space ( X ,  d )  
has a subsequence which is convergent in X ,  then for  every positive number E 

there is aj ini te  E-net, D,, f o r  E such that D, C E. 

Proof: Suppose that every sequence in E has a convergent subsequence and 
that, for some positive number E, there is no finite E-net for E which is also a 
subset of E .  Then, if p 1  E E ,  there must be a point pz E E such that d(p1, pz)  3 E 

because, otherwise, { P I } ,  which is a subset of E ,  would be a finite E-net for 
E contrary to the assumption. Having chosen p1, p2 ,  . . . , Pn-1 E E such that 
d ( p i ,  p j )  3 E for 1 d i < j 6 n- 1, we can choose a point Pn E E such that 
d ( p i ,  P n )  3 E for 1 d i d n- 1 because, otherwise, {p i ,  . . ., P n - l } ,  which is a 
subset of E ,  would be a finite E-net for E contrary to the assumption. In this 
manner, we construct a sequence {pn} in E such that d(pn ,  p,) L E for m # n. 

Now suppose {pnk} is any subsequence of {pn}.  Since { n k }  is a strictly 
increasing sequence, it follows that n k  # nj if k Zj. Hence 

If p is any point of X and if k and j are any two different positive integers, we 
conclude that 

E d d(Pnk, pnj)  d d(pnk ,  P I  + d ( ~ ,  Pnj) 

Hence, there is no positive integer 1 such that d(pni ,  p )  < 4 3  for every i L I 
for, otherwise, we could conclude that E G 2 ~ / 3  which is clearly impossible since 
E is a positive finite number. Thus {pn,} cannot converge. Since {pn } was any 
subsequence of { p n } ,  this shows that there must be at least one sequence in 
E which contains no convergent subsequence. Since this is a contradiction, 
the theorem is proved. 

k 

Corollary: If a subset E of a metric space is sequentially compact, then 
it is totally bounded. 
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Convergence of sequences is actually an exceptional occurrence. In view 
of this fact, the following theorem may seem rather surprising. 

Theorem 7.20: If K is a subset of the metric space ( X ,  d ) ,  the following 
statements are equivalent: 

(a) K is compact. 
(b) K is countably compact. 
(c) K is sequentially compact. 

Proof: Theorem 6.25 shows that (a) implies (b) and Theorem 7.18 shows that 
(b) implies (c). We will now show that (c) implies (a). If K=@.there is nothing 
to prove. Hence assume K # @  and let {G,JaEA} be any open cover of K.  Now, 
for any xEK,  there exists an a 6 4  such that xEG,. Since G, is open, there is 
a positive number 6 such that B(x ;  6) CG,. 

Let 
p ( x )  =lub { r l ( Z a E A )  and B ( x ;  r )  CG,} 

Thus, roughly speaking, p ( x )  is the radius of the largest ball about x that can 
fit into any of the open sets G,. Since p ( x )  is the least upper bound of a non- 
empty set of strictly positive numbers, it is clear that 

This shows that, for every x E K ,  p ( x )  is a strictly positive number or + m. Now 
set 

It is clear that, being the greatest lower bound of a set of extended real numbers 
which are all larger than zero, po b 0. We shall now proceed to show that po 
is stfictly greater than zero. Once this is done, the remainder of the proof 
follows easily. 

Suppose po # + 03. Then the set { p ( x )  Ix E K} - {+ m} is a nonempty set 
of finite real numbers and po is the greatest lower bound of this set also. Hence 
Theorem 7.13 shows that there is a sequence of points from K ,  say {pn}, such 
that lim p ( p n )  =po (since po is finite). By hypothesis, there is a subsequence 

{Pnk} of {pn} and a point p E K such that 
n-+m 

Since { G , l a € A }  is a cover of K ,  there exists an Y E A  such that P E G  and 
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since Gv is open there exists a 6 > 0 such that 

Since 

there is a positive integer N such that for all IC 2 N 

d(Pnk, P >  < 6/2 

y E B(pn,; 8/21 
Now if for any k 3 N 

then 

This shows that, for every k 3 N ,  

P(Pn,J 2 612 > 0 

Now, since lim n-m p(pn)  = po, the remarks following Definition 7.14 show that 

k-t lim m p ( pn,) = PO 

Thus, for every > 0, there is an integer N1 such that for k 3 N1 

and so, for k 2 max { N ,  N l }  

Since this must be true for every € 1  > 0, we conclude that 

Thus we have shown that if po #+a then po is a strictly positive number. In 
any case, there is a positive number E such that 

Because K is sequentially compact, Theorem 7.19 shows that for this E 
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there is a finite €-net, De, such that D,CK. That is, there is a finite number of 
points of K ,  say y1, . . ., y,, such that 

KCB(y1;  E)U . . . UB(y,; E )  

Now, since PO > E, it is also true that for 1 d i d s 

P ( Y d  2 Po > E 

and this shows that for each i= 1,2,3, . . ., s we can find an a i E A  such that 

B b i ;  E) C Gai 

Hence 
I tCB(r l ;  E)U . . . UB(ys; E) CG,,U . . . UG,, 

Thus {Gaill d i d s} is a finite subcover of K ;  and, since {Gala E A }  was 
any open cover of K ,  this proves that K is compact. 

Corollary: If a sequence in the Euclidean space Rk is bounded, it must 
contain a convergent subsequence. 

Proof: Since the range A of the sequence is a bounded set, there is a k-cell 
Q which contains A .  But Q is compact. The theorem now shows that the 
sequence contains a subsequence which converges to a point of Q and hence 
to a point of Rk. 

There is yet another way of associating limits with sequences of real 
numbers even if they diverge, which, as will be seen, is really a combination 
of the preceding two ways. 

Definition 7.21: Let { S n }  be a sequence of (finite) real numbers. Put 

The numbers s* and s* exist in the extended real number system (see 
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remarks following Dejinition 2.3) and are called the upper and lower limits 
of (sn}, respectively. The following notation is used: 

s*=lim SUP Sn 

s*= lim inf sn 

n-+ m 

n-+ 

The abbreviated notations, such as lim SUPn or lim sup, are also commonly 
used for  lim sup and similarly for lim inf. The classical notations & and 
- lim for lim sup and lim inf, respectively, are also still in use. The numbers 
s* and s* are also referred to as the superior and inferior limitslof {Sn}. 

n-+m n-m 

From equations (2-1) it is clear that 

k- - inf {-snln 3 k }  

- s* = syp (- fk) 
and 

It follows from this that 

and similarly 

- S* = lim inf (- S n )  
n - f m  

-s*=lim SUP (-sn) 
n-m 

Because of these relations we shall often be able to prove theorems about the 
inferior limit of a sequence immediately from the corresponding theorems about 
the superior limit of a sequence. 

Theorem 7.22: For any sequence of real numbers {sn}, 

Proof: Set T I , = { s , I ~  3 k } ,  &=sup Tk, and lk=inf Tk. Then {fk} is a mono- 
tonically decreasing sequence since Tk+l C l'k implies sup Tk+, G sup Tk. In 
the same way we see that { i k }  is a monotonically increasingsequence. It is also 
clear that for any k 

{ k  d 4 

So for any two positive integers i and j 
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_ti d _ti+j d f i+ j  d f j  

Thus, for each i ,  

and so we see 

_ti G inf fJ= lim SUP Sn 
n-m .I 

lim inf sn= sup t i s  lim sup S n  
n-+m i n-+m 

We shall now prove two theorems which are very useful for finding prop- 
erties of the superior and inferior limits. 

Theorem 1.23 : If {Sn} is a sequence of real numbers and a is an (extended) 

(a) a < lim sup Sn implies a < Sn f o r  infinitely many n. 

(b) a > lim sup Sn implies a > sn f o r  all but finitely many n. 

(c) a > lim inf S n  implies a > Sn for infinitely many n. 

(d) a < lim inf Sn implies a < sn f o r  all but finitely many n. 

Proof: Let fk and s* be as in Definition 7.21. 
Part (a). Suppose a < s*. Then, since s* d fk for every k ,  it follows that 

a < & for every k ;  that is, a is not an upper bound of {snln 3 k}. Hence there 
is an integer n 2 k such that a < Sn. Thus, for every k there exists an n 2 k 
such that a < Sn. If there were only finitely many n, say n l ,  722, . . . , nj for 
which a < Sn, we could choose k > max {nl ,  122, . . ., nj}. But since we can 
find an n 3 k for which a < S n ,  this is impossible. Therefore there must be 
infinitely many such n’s. 

Part (b). Suppose a > s*. Then a is not a lower bound of {fk}. We can 
therefore find a j such that a > f j  and hence a > Sn for all n > j .  In other words, 
a > sn for all n except those in the set (1, 2, . . . , j -  l}, that is, for all but a 
finite set. 

Now parts (c) and (d) follow from parts (a) and (b) and equation (7-2). 

real number, then 

n-+m 

n+m 

n+m 

n+m 

Theorem 7.24: If { S n }  is a sequence of real numbers and b is an (ex- 

(a) b d Sn f o r  infinitely many n implies b d lim sup Sn. 

(b) b 3 Sn f o r  all but finitely many n implies b >, lim sup Sn. 
(c) b 3 Sn f o r  infinitely many n implies b 3 lim inf Sn. 
(d) b d Sn for all but finitely many n implies b d lim inf Sn. 

tended) real number, then 

Proof: Let fk and s* be as in Definition 7.21. 
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Part (a). Suppose b d Sn for infinitely many n. Then certainly b d fk for 
every k since each set {snln 2 k }  contains all but finitely many Sn. Therefore, 
there must be infinitely many members of {snln 2 k }  greater than or equal to b. 
And as a consequence of this, the least upper bound of this set fk must also be 
greater than or equal to b. We conclude that b d igf fk=lim sup Sn .  

Part (b). Suppose b 2 sn for all but finitely many n, say n1, . . ., nj. 

Choose k > rnax {nl, . . . , nj}. Then, b 2 Sn for n 2 IC. So b is an upper bound 
of the set {snln 2 k }  and, since fk is the least upper bound, we conclude that 
b 2 fk. Therefore inf fk d fk d b. Since lirn sup Sn= inf fk, this proves part (b). 

Finally parts (e) and (d) follow from parts (a) and (b) and equation (7-2). 
k k 

The next theorem gives us yet another way of asserting the existence of a 
limit of a sequence without knowing what it is. 

Theorem 7.25: Let { S n }  be a sequence of real numbers and let s be an  
(extended) real number. Then 

if and only if 
Sn+ s 

lim sup S n  =1: lim inf S n  = s 

Proof: First suppose that equation (7-4) holds and s is finite. Let E > 0 be 
given. Then S - E  < lim inf sn and therefore Theorem 7.23(d) shows that s-E < sn 
for all but finitely many n,  say nl,  n2, . . ., nr .  Choose N I B  max {nl ,  722, . . . , nr} .  
Then, for all n 2 N 1 ,  s - E  < Sn. Now, since s + E >. lim sup Sn, we find in the 
same manner from Theorem 7.23(b) that there exists an N2 such that, for all 
n 2 N,, Sn < s + E .  So setting N = max {Nl ,  Nz},  we see that, for every n 2 N ,  
I S  - S n  I < E which proves s = lim sn. 

Next suppose equation (7-4) holds and s=+m. Then, for any finite 
real number M ,  we have M < lim inf S n  and so Theorem 7.23(d) shows that 
Sn > M for all but finitely many n,  say nl, n2, . . . , nr. If we choose N > 
max {nl, n2, . . . , n,}, then sn > M  for all n 2 N .  This shows that equation 
(7-3) holds. The case where s = - 03 follows from Theorem 7.23(b) in exactly 
the same way. 

Conversely, suppose that equation (7-3) holds and s is finite. Let E > 0 
be given, and choose N so that for all n 2 N 

n+m 

IS-SnI < E  

355-525 0-70-9 
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Then s+  E > S n  for all but finitely many n and, therefore, Theorem 7.24(b) 
shows s+ E 2 lim sup S n .  Also, s- E < S n  for all but finitely many n and so 
Theorem 7.24(d) shows that 

S - E  s lim inf sn 

Combining these results with Theorem 7.22 shows that 

S - E  s lim inf sn 6 lim sup S n  S S + E  

and, since E was arbitrary, we conclude 

s = lim inf S n  = lim sup Sn 

Next suppose equation (7-3) holds and s=+m. Then, for every real 
number M ,  we can find an integer N such that n 3 N implies S n  > M .  Hence 
S n  > M for all but finitely many n. Therefore, Theorem 7.24(d) implies M d 
lim inf S n  for every real number M and so we conclude that lim inf S n = + m .  

Theorem 7.22 now shows that equation (7-4) holds. 
Finally, the case for s = - m follows from Theorem 7.24(b) in exactly the 

same way. 

The next two theorems show how inferior and superior limits are related 
to subsequential limits. 

Theorem 7.26: Let { S n k }  be a subsequence of the sequence of real num- 
bers {Sn}. Then 

(7-5) 

Proof: If lim sup S n = +  a, it is clear that lim sup Sn,q 6 lim sup S n .  So suppose 
lim sup Sn # + m. Then, for any number a > lim sup sf l ,  Theorem 7.23(b) 
shows that S n  < a for all but finitely many n. We conclude that Snk < a  for all 
but finitely many IC. Theorem 7.24(b) now shows that lim sup S n k  G a. Now a is 
any number greater than lim sup Sn.  If lim sup S n = -  03, we can conclude that lim 
sup snk is less than or equal to every finite number and therefore that lim sup 
sn =- m. Hence Jim sup Snk d lim sup S n .  Finally suppose lim sup s n  is finite and 
let E > 0 be given. Then setting a= lim sup s n +  E,  we find that lim sup s n k d  lim 
sup S n  + E .  But since E was arbitrary, we conclude that lim sup Snk 6 lirn sup sfl. 

Now since { - s f lk}  is a subsequence of { - s n } ,  this also shows that 

k 
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lirn sup (-snP) d lirn sup (-Sn) and so equation (7-2) shows that lirn inf Sn G 
lim inf Snk. Finally combining these results with Theorem 7.22 gives equation 
(7-5). 

Theorem 7.27: I f  {sn} is any sequence of real numbers, then there 
exists a subsequence {Snk} of {Sn} such that 

snk+lim SUP S n  

(Application of equation (7-2) shows that the same result must hold with lirn inf 
in place of lim sup.) 

Proof: Let s =  Jim sup sn. First suppose s is finite. Since s - 1 < lim sup s n ,  
Theorem 7.23(a) shows that there are infinitely many n for which s - 1 < Sn. 

Let nl be any one of these. Suppose we have chosen nt, n2, . . ., nk so that 
nt < n2 < . . . < nk and 

for 1 G j S k  1 s-:< Snj 
1 

< lim sup Sn, Theorem 7.23(a) shows that there are infinitely 
1 ince s - - k + l  S' 

< Sn. Let nk+l be the smallest such n which is larger 
1 many n such that s-- l+k- 

than nk. Continuing in this manner, we construct a subsequence { Snk} of { sn} 

such that for every positive integer N 

for all nk > N .  Theorem 7.24(d) now shows that 

1 
lim inf Snk > s-- N 

for any positive integer N .  We can thus conclude that 

lim inf Snk 3 s 

But Theorem 7.26 shows that 

and so, from Theorem 7.22 or 7.26, we see that 
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lim SUP Snk = lim inf Snk = s 

Hence Theorem 7.25 shows 
Snk+ S 

Next suppose s = + a .  Then Theorem 7.23(a) shows that for any finite real 
number M' there are infinitely many n such that Sn>M'. Choose nl so that 
Snl> 1. Having chosen nl,  n2, . . . , nk in such a way that nl < n2 < . . . <nk and 
S n k  > k ,  choose nk+l from the infinitely many n for which S n  > k+ 1 to be the 
smallest such n which is larger than nk. Continuing in this way we construct 
a subsequence {snk} of { S n }  such that, for any positive integer K ,  Snk > K 
whenever k 2 K. Thus, if IM is any finite number, we can choose K 2 M Then 
Snk > Mwhenever k 3 K .  That is, Snk+ + 03. 

Finally if s = - a  it follows from Theorems 7.22 and 7.25 that S n - 3 - a  
and, since {sn}is a subsequence of itself, we are done. 

Theorems 7.25 and 7.26 show that all the subsequential limits of a real 
sequence { S n }  must be less than or equal to lim sup sn and greater than or 
equal to lim inf S n .  In fact, if we let S be the set of all extended real numbers 
s such that S n k +  s for some subsequence { S n k }  of {Sn}, it is clear that lim sup sn 
is an upper bound of S and lim inf S n  is a lower bound of S. Also, Theorem 7.27 
shows that they are the least upper bound and greatest lower bound, respec- 
tively, of S and that they are both members of S. 

The next theorem introduces two of the many inequalities relating the SU- 

perior and inferior limits. Most of the others can be obtained by the method 
used in proving the theorem. 

Theorem 1.28: Let { S n )  and (tn) be sequences offinite real numbers. 
(a) Then lirn SUP S n  + lim SUP tn s lim SUP (sn + tn). 
(b) If s n d  tn for  every n,  then lim sup S n  s l i m  sup tn. 

Proof: Part (a). Set s*=lim sup S n  and t*=lim sup tn. Let E > 0 be given. 
Theorem 7.23ta) shows that, for infinitely many n, sn > s* - ~ / 2  and tn > t* - ~ / 2 .  
Thus, for infinitely many n,  

and so Theorem 7.24(a) shows that 

s*+ t * - ~  lim SUP (sn+ tn) 

Since E was arbitrary, part (a) follows. 
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Part (b). Let S* be as in part (a). Notice that, given E > 0, t n  3 Sn > s*-E 
for infinitely many n. So Theorem 7.24(a) shows that 

Since E was arbitrary, part (b) follows. 

Let {Sn}  be the sequence whose nth term is 

Then lim inf Sn=- 1 and lim sup Sn= 1. 
We have shown in chapter 5 that the set of all rational numbers can 

be “arranged” in a sequence. It is easy to show by use of the axiom of Archi- 
medes (chapter 2) that every real number is a subsequential limit of this 
sequence. 

We conclude this chapter by computing the limits of two real valued 
sequences which occur frequently in practice and will be referred to later in 
the text. In order to accomplish this we shall employ the following device: 
If { s n }  and { t n }  are numerical sequences and if there is some integer N such 
that, for all n 2 N ,  0 S Sn d t n ,  then { s n }  converges to zero if { t n }  does. 

Let a be a positive number. It is clear that, for any E > 0, Il/n‘l < E for 
every integer n larger than (I/€) 

On the other hand, for n 2 2m and d > 1, we see from the binomial theorem 
that 

Hence, lilim l/n‘ = 0. 

n??I(d- 1)” 
2mm! ( d -  1)” > n(n -1 )  . . . ( n - m + l )  

m! dn= [1+ ( d -  l ) ] “  > 

Hence, for any number r 

for n > 2m. If we take m larger than r in this inequality we see that 

nr lim-=O f o r d >  1 
n+m dn 
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CHAPTER 8 

Continuity and Function Algebras 

According to Cauchy's definition of continuity, a function is continuous at 
a point p if it has a limit at p .  The modern point of view is somewhat different 
from this, but, as we shall see, the current definition of continuity is equivalent 
to Cauchy's. 

Although the topological space is actually 'the most natural setting for dis- 
cussing continuous functions, the somewhat less general metric space will 
better serve our purposes. By discussing the concept of continuity in the ab- 
stract setting of a metric space instead of talking about the continuity of real 
or complex valued functions on the line or plane, we not only obtain greater 
generality (which is by no means without application) but many of the proofs 
of the theorems are actually simplified. 

We shall first introduce the concept of limit which is closely related to the 
concept of continuity. 

Definition 8.1 : If ( X ,  d )  and ( Y ,  d' ) are metric spaces, E C X ,  f :  E + Y ,  
and p is a limit point of E ,  we shall write 

or 
lim f ( x ) = q  
X--tP 

if  there exists a point q E Y ,  with the property that, for every E > 0,  there exists 
a 6 > 0 such that 

In this event f is said to have a limit at p ,  and the point q is called the limit 
off at p .  

Definition 8.1 does not require that the limit point p belong to E (the domain 
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of definition f). However, if it happens that p is in E ,  then B ( p ;  6) n E is nothing 
more than the ball about p of radius 6 in the subspace ( E ,  d )  (see Theorem 
6.15). Hence, if we had imposed the restriction p E E ,  the definition could have 
been made entirely within the metric space ( E ,  d )  without mention of the em- 
bedding space ( X ,  d ) .  Naturally the domain E off can be equal to X .  We shall 
now show that this definition could have been stated in terms of sequences. 

By definition, a sequence {pn} in a set X is a function f: J + X  where J 
is the set of positive integers. If Y is another set and g : X +  Y ,  then the compo- 
sition h=go f is a function from J to Y and, hence, is a sequence in Y. More- 
over, for each integer n E J ,  h ( n ) = g ( p n ) .  

Theorem 8.2: If X and Y are metric spaces, E C X ,  f : E + Y ,  and p is a 
limit point of E ,  then 

lim f ( x ) = q  
x-f P 

if and only if, 

f o r  every sequence {pn] in E such that pn+ p .  

Proof: Assume that equation (8-1) is true and let {pn} be any sequence in E 
which converges to p .  Given E > 0, we can find a 6 > 0 such that 

and, for this 6, we can find a positive integer N such that, for every n 2 N ,  
pn E B ( p ;  6). Since Pn E E ,  it is clear that Pn E B ( p ;  6) n E.  Hence, 
f (pn) E B(Q; E) for all n 2 N and equation (8-2) holds. 

On the other hand, if equation (8-1) is not true, then, there is some E > 0 
such that, for each 6 > 0, we can find at least one x E B ( p ;  6) n E for which 
f (x) e B ( q ;  E ) .  Hence, for each positive integer n, choose pn E B ( p ;  l / n )  n E 
such that f ( P n )  B ( q ;  E ) .  Then {pn} is a sequence of points of E which con- 
verges to p for which equation (8-2) does not hold. 

The following corollary is an immediate consequence of Theorems 7.3 
and 8.2. 

Corollary 1 : If a function f from a subset E of a metric space X to a metric 
space Y has a limit at some limit point of E ,  then this limit is unique. 
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Corollary 2: If a function f from a subset E of metric space X to a metric 
space Y has a limit at some limit point p of E ,  then p E E implies lirn f (x)=f (p). 

Z-fP 

Proof: Let {pn} be the constant sequence p ,  p ,  p ,  . . . . The conclusion 
follows from the fact that {pn} is a sequence in E such that lim f (pn)= f ( p ) .  

n-+ m 

Corollary 3: Let ( X ,  d )  and ( Y ,  d ’ )  be two metric spaces, let E C A C X ,  
and let f : A +  Y. Suppose that p is a limit point of both A and E and that 
lini f (x) = q. If g : E + Y is the restriction off to E ,  then lim g(x)= q. 

Proof: If {p,} is any sequence of points of E such that pn+ p ,  then {pn} is also 
a sequence of points of A with this property. Hence the theorem shows that 
lim f (pn )=q .  Since each pn belongs to E ,  it follows that f (Pn)=g(pn)  for 

every n. Hence lim g(pn)=q. Since {pn} was any sequence in E which con- 

verges to p ,  the theorem shows that lim g ( x )  = q. 

X-fP X + P  

n-+ m 

n + m  

X-f P 

Corollary 4: Let X and Y be metric spaces and let A be a nonempty subset 
of X .  Iff : A + Y,  p is a limit point of A and lim f (x) = q, then q E f ( A ) .  

Proof: If p is a limit point of A it is certainly an adherence point of A .  Hence 
it follows from Theorem 7.4 that there is a sequence {pn} of points of A such 
that Pn+ p .  Therefore Theorem 8.2 shows that f ( p n ) +  q. Since every Pn 
belongs to A it is clear that f ( p , )  E f ( A )  for every n. Hence { f ( p n ) }  is a se- 
quence of points off ( A )  which converges to q. Thus Theorem 7.4 now shows 
that q is an adherence point off ( A )  ; that is, q E f ( A ) .  

X-+P 

Definition 8.3: If ( X ,  d )  and ( Y ,  d ’ )  are metric spaces and f : X +  Y ,  
the function f is said to be continuous at the point p E X if, for  every E > 0 ,  
there exists a 6 > 0 such that 

If a function is not continuous at a point p E X it is said to be discon- 
tinuous at p or to have a discontinuity at p .  Iff is continuous at every point 
of X ,  then f is simply said to be continuous. 

Note that B ( p ;  6) is a ball in ( X ,  d )  while B (  f ( p ) ;  E )  is a ball in ( Y ,  d’). 
If we are willing to agree that the mathematical concept of “ball about 
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a point” corresponds to our intuitive idea of “proximity” to that point, then the 
preceding definition says that f is continuous at p i , f f ( q )  is arbitrarily close 
to f ( p )  as soon as q is su,cien.tly close to p .  The concept of continuity is 
illustrated in figure 8-1. 

f 

FIGURE 8-1. -Illustration of continuity concept. 

Iff : X +  Y ,  q E Y andf(x) = q for every x E X ,  thenfis called a constant 
mapping. Clearly every constant mapping is continuous. . 

Suppose (2, d )  and ( Y ,  d ’ )  are metric spaces, E C 2, and f :  E+ Y. 
Now ( E ,  d )  is a metric space (with the same metric as (2, d ) )  and Definition 8.3 
applies to this metric space and not to the metric space (2, d ) .  In this situa- 
tion, then, we must realize that the ball B ( p ;  8) in relation (8-3a) is to be 
interpreted as a ball in the metric space ( E ,  d )  and not as a ball in the metric 
space (2, d ) .  To point out this difference, let us temporarily return to the 
notation of Theorem 6.15 and use the superscript E to denote balls in the metric 
space ( E ,  d )  and the superscript 2 to denote balls in the metric space (2, d) .  
With this notation, the condition (8-3a) is 

f ( W p ;  8) )  c B ( f ( p ) ;  4 (8-3b) 

But Theorem 6.15 shows us that there is a simple relation between balls 
in the metric space ( E ,  d )  and those in the metric space (2, d )  which for the 
present case is 

~ y p ;  s) = B Z ( ~ ;  s) n E 

If this relation is used, the inclusion (8-3b) can also be written as 
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It. is not hard to verify that Definition 8.3 is entirely equivalent to the 
following more familiar definition of continuity: 

If ( X ,  d )  and ( Y ,  d ' )  are metric spaces and f: X +  Y ,  then the function f 
is continuous at the point p E X if and only if, for every E > 0, there exists a 
6 > 0 such that 

whenever 
d ' ( f  (4 7 f ( P ) )  < E 

d(x7 P )  < 6 

Instead of explicitly mentioning the radii E and 6 of the balls in Defini- 
tion 8.3, we could have said that, iff is to be continuous at p ,  then, for every 
ball B about f ( p )  , there must be a ball about p whose image under f is a subset 
of B.  In fact, since every ball about a point is also a neighborhood and since, 
for every neighborhood V of a point, there is a ball about that point which is 
in V ,  we could have stated Definition 8.3 completely in terms of neighbor- 
hoods. In this way we see that continuity at a point, like convergence, is a 
topological property. 

Definition 8.3 requires, in contrast to Definition 8.1, that f must be defined 
at a point p in order to be continuous at p .  If the point p in Definition 8.3 is 
not a limit point (i.e., if it is an isolated point), then we can find a ball B ( p ;  6) 
about p that contains only the point p and, for this 6, 

f ( N p ;  6)) =f ( { P I )  c B ( f  (PI  ; 4 
for every E > 0. Thus every function is continuous at the isolated points of its 
domain. On the other hand, if p is a limit point of X ,  then there is a close rela- 
tion between Definitions 8.1 and 8.3 which is given by the following theorem. 

Theorem 8.4: If X and Y are metric spaces, f :  X +  Y and p E X is a 
limit point of X ,  then, f is continuous at p if and only iflim f (x) = f ( p )  . 
Proof: In view of the fact that the domain of definition off is all of X ,  it follows 
from Definition 8.1 that lim f ( x )  = f ( p )  if and only if for every E >  0 there 
exists a 6 > 0 such that 

X - + P  

x-) P 

that is if and only iff is continuous at p .  
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Let f map the metric space X into the metric space Y. If p is an isolated 
point of X and {pn} is any sequence in X which converges to p ,  it is clear 
that {pn} differs from the constant sequence p ,  p ,  p ,  . . . by at most a finite 
number of terms. It follows from this that 

Hence, in view of the remarks preceding Theorem 8.4, the following theorem 
is an immediate consequence of Theorems 8.2 and 8.4. 

Theorem 8.5: A function f from a metric space X to a metric space Y is 
continuous at a point p of X if and only if, for  every sequence (pn} in X which 
converges to p ,  lim f (pn)  f ( p ) .  

n-+ m 

This theorem shows that the continuous functions are precisely those 
which map convergent sequences into convergent sequences or in other words 
which “preserve convergence.” 

Corollary: Let ( X ,  d ) ,  ( Y ,  a), and ( S ,  p )  be metric spaces. Let f : S+ X 
and g : S + Y. Then the function h : S + X X Y defined by 

h ( s ) =  ( f ( s ) ,  g ( s ) )  for  all s E S 

is a function into the direct product {X X Y ,  dx )  of ( X ,  d )  and ( Y ,  6) which is 
continuous at the point p E S if  and only i f  both f and g are continuous at p .  
Proof: This is an immediate consequence of the theorem and Theorem 7.9(a). 

Theorem 8.6: Let ( X ,  d )  , ( Y ,  d ’ ) ,  and (2, d )  be metric spaces. Suppose 
that f : X +  Y and g : Y+ Z .  I f f  is continuous at a point p E X and g is con- 
tinuous at f ( p )  , then the composition h =go f is continuous at p .  
Proof: (See fig. 8-2.) Let E > 0 be given. Since g is continuous at f ( p ) ,  there 
is an q > 0 such that 

Now the continuity off at p shows that we can find a 6 > 0 such that 
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But, 
d f  ( B  ( P ;  8) 1 = h ( B  (P;  8) ) 

which proves the theorem. 

Roughly speaking, this theorem states that a continuous function of a 
continuous function is continuous. 

I 

h - g  f 

FIGURE 8-2. -Illustration of Theorem 8.8 proof. 

The following useful characterization of continuity points out the topologi- 
cal nature of this property. 

Theorem 8.7:- If X and Y are metric spaces and f : X +  Y ,  then f is 
continuous i f  and only i f ,  f o r  every open set V C Y ,  f - ' (V> is an open subset 
of x. 
Proof: First let f be continuous and choose an open set V C  Y. If p is any 
point of f - ' ( V > ,  then f ( p )  E V.  Since V is an open set, we can find a ball 
B (f ( p )  ; E )  about f ( p )  of radius E such that B (f ( p )  ; E )  C V. Now the continu- 
ity off at p implies that there is a 8 > 0 such that f ( B ( p ;  8)) C B (  f ( p )  ; E )  C V. 
Then from table 4-1 we see that B ( p ;  8) C f - l (  f ( B ( p ;  8 ) ) )  C f - ' ( V )  and this 
shows that f - ' ( V )  is open. 

On the other hand, suppose f - ' (V )  is an open set in X whenever V is an 
open set in Y. Let p be any point of X and fix E > 0. SinceB( f ( p )  ; E )  is an open 
set, the set f -1  ( B (  f ( p )  ; E ) )  is also. Therefore the fact that p E f -l  ( B  ( f ( p )  ; E ) )  

shows that there is a 8 > 0 for which 
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Since E was arbitrary, this shows that f is  continuous at p and, since p was any 
point of X ,  we conclude that f is continuous. 

FIGURE 8-3. -Inverse image of an open set under a discontinuous function. 
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Consider the function f: R 1 +  R1 defined by 

for x < 1 1" l + x  f o r x > l  
f (4 = 

This function is clearly discontinuous at 1 and f -'( (1/2, 3/2) ) = (1/2, 11. 
Evidently (1/2, 3/2) is an open set and (1/2, 13 is not since 1 is a point of this 
interval which is not an interior point. This example is illustrated in figure 8-3. 

Corollary 1: If E is any nonempty subset of a metric space ( X ,  d )  , then 
j E ,  the natural injection of E into X ,  is a continuous mapping of the metric 
space ( E ,  d )  into ( X ,  d ) .  
Proof: Let G be any open subset of X .  Equation (P-3) shows that 
jE-' ( G )  = G fl E. Hence Theorem 6.16 implies that jE-l (G) is an open subset of 
( E ,  d ) .  The conclusion now follows from the theorem. 

Notice that even though the inverse image of every open set under a con- 
tinuous mapping is an open set, the image of an open set need not be open. 
For, i f f :  R 1 +  R' is defined by 

f (x) = x 2  for every x E R1 

then f is continuous and the image under f of the open set (- 1, 1) is the half- 
open interval [0, 1) which is not an open subset of R'. 

Corollary 2:. If a mapping f of a metric space ( X ,  d )  into a metric space 
( Y ,  d ' )  is continuous at a point p and if E is a subset o f X  which contains p ,  
then the restriction off to E is a mapping of the metric space ( E ,  d )  into Y which 
is continuous at p .  

Proof: According to the remark following Definition 4.11, the restriction of 
f to E is the mappingfojE where j E  is the natural injection of E into X .  Corollary 
1 to Theorem 8.7 shows that j E  is a mapping of the metric space ( E ,  d )  into the 
metric space ( X ,  d )  which is certainly continuous at p .  Hence Theorem 8.6 
now shows that fo jE ,  the restriction off to E ,  is a mapping from ( E ,  d )  into 
( Y ,  d ' )  which is continuous at p .  

Notice however that the restriction of a mapping f of a metric space ( X ,  d )  
to a subspace ( E ,  d )  may be a continuous mapping of ( E ,  d )  even though the 
mapping f defined on ( X ,  d )  is not continuous at any point of E. An example 
of this is provided by Dirichlet's function, which is the mapping f: R1+ R' 
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defined by 
0 

1 

for x a rational number 

for x an irrational number 
f (x) = 

Since the restriction off to the set Q of all rational numbers is a constant 
mapping of Q into R 1 ,  it is clearly colitinuous even though f is certainly not 
continuoils at any point of R1. 

Theorem 8.8: Let f and g be two continuous mappings of a metric space 
( X ,  d )  into a metric space (Y ,  d ' ) .  Then the set 

A = -b E x I f (4 =m 1 
is closed. 
Proof: The corollary to Theorem 6.10 shows it is sufficient to prove that A" is 
open. To this end let p be any point of AC. Evidently f ( p )  # g ( p ) .  Hence if 
we set E =  d' (f ( p )  , g ( p )  ), then E > 0. Since f and g are both continuous at p ,  
there exists a S > 0 such that d ' ( f  ( p ) ,  f (x)) < E / Z  and d ' ( g ( p ) ,  g ( x ) )  < E / Z  
for all x E B ( p ;  8) .  Then, whenever x E B ( p ;  S) , E = d' (f ( p )  , g ( p )  ) d d' (f ( p ) ,  
fb)) +d' cf(x> , g(x> ) + d' Mx), g ( p >  < 4 2  + d' Cfb) , g ( x ) )  + 4 2 .  Hence 

This shows that f (x) # g ( x )  for any x E B ( p ;  8). Therefore B ( p ;  S) C A". 
Since p was any point of A", it follows that A" is open. 

Corollary: Let f and g be two continuous functions f rom a metric space X 
to ametric space Y and suppose there i s  a dense subset E C X such that, f o r  all 
x E E ,  f (x) = g ( x ) .  Then f=g .  

Proof: Since E = X  and since E is the smallest closed set containing E ,  the 
theorem shows thatf (x) = g ( x )  for everyx E X ;  that is, f=g .  

Theorem 8.9: Let A be a dense subset of the metric space ( X ,  d )  and let 
f map A into the metric space ( Y ,  d ' ) .  Then f has a continuous extension 
L t o  X if and only i f f  has a limit at every limit point p of X .  The extension 
f is then unique. 

n 

Proof: First suppose that a continuous extension f of f exists. Then..f is the 
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A 

restriction off to A .  Theorem 8.4 shows that at every limit point p of X 

Since p is a limit point of X and A is a dense subset of X ,  Theorem 6.9(b) shows 
that p is a limit point of A .  Hence the third corollary to Theorem 8.2 shows that 
limf(x) exists, which proves the assertion. 

Conversely, suppose that lim f ( x )  exists at every limit point p of X. If 
q is not a limit point of X there exists a ball B ( q ;  E )  about q such that q is the 
only point of X belonging to B (4; E ) .  Since A is dense in X ,  B (4; E )  must contain 
a point of A .  Hence q E A .  Thus every point of X is either a limit point of X 
or a point of A .  In view of this, let us define f: X +  Y by 

x-P 

x-f P 

if p is a limit point of X 

if p is not a limit point of X 
P(P> = 

n 

Let p be any point of A. If p is not a limit point of X , f ( p )  =f(p). If p is a limit 
point of X ,  then Corollary 2 of Theorem 8.2 shaws that f(p) = lim f(x) =f(p) . 
Hence f is an extension off. 

Let us now show that f is continuous at every point p E X. If p is not a 
limit point of X ,  then f is automatically continuous at p. Hence suppose that p 
is a limit point of X .  Fix E > 0. By construction, there exists a 6 > 0 such that 

Z+P 

n 

Hence suppose that y 4 . A .  We have already established that y must be a 
limit point of X .  Theorem 6.9(b) now shows that y is a limit point of A .  Hence y 
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must also be a limit point of B ( p ;  6) n A.21 Corollary 3 of Theorem 8.2 now 
shows that if g is the restriction off to B ( p ;  S) n A , then 

fir) = lim g ( 4  x-Y 
Hence Corollary 4 of Theorem 8.2 shows thatf((y) E g ( B ( p ;  8) n A ) .  Since 
g is the restriction of f to B ( p ;  S) n A and f is the restriction o f 3  to 
A 3 B ( p ;  6) n A ,  it follows that 

&up;  6) n A )  = f ( B ( p ;  6 )  n A )  = m p ;  6) n A )  

We conclude from the inclusion 8.4 and Theorem 6.8 that 

we have established that 

3 (Y) E B (j. ( P I  ; €1 for every Y E ~ ( p ;  6) 

Hence 1 is continuous at p for every p E X .  
It remains only to prove that there is only one continuous extension off. 

But this is an immediate consequence of the corollary to Theorem 8.8 and the 
fact that A is a dense subset of X .  

In discussing sequences we examined the relation between algebraic 
operations on the one hand and convergence on the other. Now we shall 
consider the relation between algebraic operations and continuity. To this end 
we introduce a new algebraic structure called an algebra which is linear space 
whose elements can be “multiplied together.” 

*I For if y E B ( p ;  6) were not a limit point of B ( p ;  6) n A,  there would be an E ,  > 0 such that B ( y ;  €1) contained 
no points of B ( p ;  6) n A - {y}. Since y f5 A, this means that B(y;  e l )  would contain no points of B f p - 3 )  n A. But since 
y belongstotheopensetB(p;G),thereis anEt>OsuchthatB(y;E2) c B(p;F) .Se t~~=min{~ , ,~Z) .S incey i sa l imi t  
point of A, B(y ;  €3) contains a point ofA. But every point ofB(y; e3)  must be a point ofB(p; 6). HenceB(y; €3) contains 
a-point of B ( p ;  6) n A-. Since B(y ;  €3) C B(y ;  el), B ( y ;  6) must also contain a point of B ( p ;  6) n A which is a con- 
tradiction. 
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Definition 8.10: A real (complex) algebra is a real (complex) linear 
space A and an operation called multiplication which associates with any  
two elements at ,  a2 E A a unique element of A ,  denoted by at a2, in  such a 
way that if a3 is any element of A and a is any  rea.? (complex) number, the 
followirLg are true: 

( M I )  ( a t m ) a 3 =  at(a2a3) (Associativity) 
( M 2 )  a (a la2 )  = ( a a l ) a z =  at ( a m )  (Associativity) 
( D 1 )  al(a2+a3) =ataZ+ata3 (Distributive law) 
(D2 1 (az+a3)al=azat+aaat (Distributive law) 

alaz=azat f o r  all a l ,  a2 E A 
If 

then A is said to be a commutative algebra. 
If there exists an  element e E A such that 

ea=ae=a for all a E A 

then e is said to be unity of A .  
I f  a is a nonzero element 

exists an  x E A such that 
of an algebra A with a unity e and if there 

xa=ax=e 

then x is called the multiplicative inverse 23 of ‘a and is denoted by a-l .  
I f  a is a nonzero element of a commutative algebra A (with a unity) which 

has a multiplicative inverse and b is any  element of A ,  we write bla in  place of 
a-lb or ba-l since a-lb= ba-l. 

It is not hard to prove that if an algebra A has unity e, then e is unique, 
and if a nonzero element a E A has a multiplicative inverse, then this inverse 
is also unique. 

It is easily verified that the set of real numbers (with the usual method of 
adding and multiplying numbers) satisfies the axioms of a real commutative 
algebra with a unity in which every nonzero element has a multiplicative 
inverse. The zero of this algebra is of course the number zero and the unity 

22 The zero element of an algebra is of course the zero of the underlying linear space. 
23 Notice that since A is a linear space there is an element--a E A for every element a E A .  We have also called 

this element -a the inverse of a.  It is often called the additive inverse of a to distinguish it from the multiplicative 
inverse. 
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is the number 1. Also the set C of all complex numbers (with the usual defini- 
tions of addition and multiplication) satisfies the axioms of complex commu- 
tative algebra with a unity in which every nonzero element has a multiplicative 
inverse. 

If a is an element of an algebra we write a’= a and for any positive integer 
n we define by 

= 

Thus 

following laws of exponents hold: 

is defined inductively for every positive integer n. 
It can be proved by induction that for any positive integers m and n the 

al la l l /  = a ( l l + l l l )  

( , I / )  111 = al l l l l  

Let E be a subset of a real (complex) algebra A .  For any al,  . . ., a,, E E ,  
any real (complex) number A and any positive integers il, i 2 ,  . . ., ill, the 
element 24 

m= Aa;ia.:’z . . . aJi 

of A is called a monomial in  E. If m l ,  m2,  . . ., mr; are any k monomials in E ,  
the element 

p=ml+m2+. . .+mk 

is called a polynomial in E.  
We now are ready to consider those algebraic operations which combine 

functions. We shall require that functions be combined in a pointwise manner. 
The reader is reminded that iff  is a function from a set X to a linear space M ,  
then, for each x E X ,  f ( x )  is a point of M .  That is, for each x ,  f (x) is a vector. 
With this in mind, we make the following definition. 

Definition 8.11: Let X be any set and M a real (complex) vector space. 
Let F ( X ,  M )  be the family  of all functions from X into M .  For any two func- 
tions f, g E F ( X ,  M )  the function f + g  is defined pointwise by 

y4  If A has a unity e ,  we can define in a consistent way, for any nonzero a E A ,  u”=e. Then i f  e E E we can allow 
the integers i,, . . ., i,, in this definition to be any nonnegative integers. Thus, for any real (complex) number A. he is a 
monomial called the “constant” monomial. Any polynomial which has the constant monomial as one of its terms is 
said to have a “constant” term. 
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(8-5) 

For any  real (complex) number a and any  function f E F ( X ,  M )  the 

( f + g )  (x) = f (x) + g ( x )  fo r  all x E X 

function af  is defined by  

( a f )  (x) = a f ( x )  fo r  all x E X (8-6) 

The function (- 1) f is denoted by  -5 
For any  point a E M the function f E F ( X ,  M )  defined by 

f (x) = a  f o r  all x E X  (8-7) 

is called a constant function and we write f= a. 

we define the function f g  by 
If in addition M is an algebra, then, f o r  any  two functions f, g E F ( X ,  M ) ,  

(fa (4 = f ( x ) g ( x )  for  all x E x (8-8) 

If M is a commutative algebra in which every nonzero element has a 
multiplicative inverse, then, f o r  any  two functions f ,  g E F ( X ,  M )  such that 
0 ,  the zero vector of the vector space M ,  does not belong to the range off, we 
define the function g/f  by  

I f f  and g map X into the Euclidean space Rk,  we define f -  g by 

( f a  g )  (x) =f(x) g ( x )  for all x E X 

These definitions can be extended in an obvious way to functions with 
values in the extended real number system. 

Theorem 8.12: Let X be any set and M a real (complex) vector space. 
Then F ( X ,  M ) ,  the fami ly  of all functions from X into M ,  is a vector space 
with the operations of addition and scalar multiplication defined by  equations 
(8-5) and (8-6), respectively. 

If M is also an algebra, then F ( X ,  M )  is an algebra 25 when multiplica- 
tion on F ( X ,  M )  is defined by equation (8-8). 

*j We shall call any such algebra whose elements are functions afunction algebra. 
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Proof: Clearly the constant function 0, which associates the zero vector with 
every x E X ,  is the zero of 9 ( X ,  M ) .  Since 

(f+(-f))(x)=f(x)+(-l)f(x)=Of(x)=O for everyx E X  

it is clear that - f is the additive inverse off for any f E  F ( X ,  M )  . 
It is an immediate consequence of the fact that the remaining axioms of 

Definition 3.1 hold in the vector space M that they also hold in 9 ( X ,  M ) .  Let 
us show, for example, that the commutative law of addition ((Al) of Definition 
3.1) holds in 9 ( X ,  M ) .  We have, by definition, for any two functions 
.A g E 9 ( X ,  M )  

( f + g )  (x) = f (x) + g ( x )  for all x E X 
and 

(g+ f) (x) = g ( x )  + f (x) for all x E X 

Since M is a vector space we must have 

f ( x )  + g ( x )  = g ( x )  + f ( x )  

(f + g )  (x) = (g+ f) (x) 

for every x E X 
Hence, 

That is, 

which is the desired result. 
If the points of M satisfy the axioms of Definition 8.10 in addition to those 

of Definition 3.1, it follows that the elements of 9 ( X ,  M )  do also when multi- 
plication is defined by equation (8-8). 

for every x E X 

f + g = g + f  

In particular this theorem shows that the set of all real (complex) valued 
functions which are defined on a given set X is a real (complex) algebra. 

It follows from the preceding definitions that iff  E F ( X ,  M )  and M is a 
real (complex) algebra, then for any positive integer n the functionf’ is defined 
by 

or, more generally, if a1, a2, . . ., an are n real (complex) numbers, the func- 
tion a1 f + . . . + an f )z is defined by 

f’(x) = [ f (x)] for all x E X 

( a l f l + .  . . + a n f i 2 ) ( x ) = a l f 1 ( x ) + .  . .+an f l2 (x )  for a l lx  E X  
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Let the functions pi : Rk+ R1( l  d i d k) be defined by 

(8-10) p j ( x ) = x i  for every X= (XI, . . ., xl;) E R k  

and let 1 be the function which assigns the number 1 to each point x of R k .  
Then the set 

gl;= { P l ,  . . . , Pk,. 1> (8-11) 

is a subset of the real function algebra F ( R k ,  R 1 ) .  

function m = Api'pe . . . p,& is a monomial in gl;. Evidently 
If A is any real number and il, . . ., il; are any nonnegative integers, the 

m ( x )  = h~ilxjz . . . x L . ~  for every x= (X I ,  . . . xk) E R k  

If ml, m2, . . ., mj are any j monomials in gk, the function p=ml+m2 
+. . . +mj is a polynomial in 8l;. Thus if k=3  the function p3 : R3+ R' de- 
fined by 

is a polynomial in gs. 

Definition 8.13: Let A be a real (complex) algebra and let E C A .  Sup- 
pose that for  every a l ,  a2 E E and for any  two real (complex) numbers a and p 

aal+pa2 E E (8-12) 
and 

ala2 E E (8-13) 

Then E is called a subalgebra of A .  

It now follows from Definitions 3.1 and 8.10 that every subalgebra is an 
algebra in its own right with the same definitions of addition, multiplication, 
and scalar multiplication as in the original algebra. It is easy to see that if 
E and F are subalgebras of an algebra A ,  then E n F is also a subalgebra of A .  

If A is an algebra and E is any subset of A it can easily be shown that the 
set P of all polynomials in E is a subalgebra of A which contains E. The set 
P is said to be the subalgebra of A which is generated by E. It is the smallest 
subalgebra of A which contains E.  That is, every subalgebra of A which con- 
tains E also contains P .  Consider, for example, the subset gl; of the function 
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algebra 9-(Rji, R ' )  which is defined by equation (8-11). The set 9 of all 
polynomials in 81,. is a subalgebra of 9- (R"', R' ). 

Definition 8.14: A n  algebra A is said to be normed if the linear space A 
has a norm and if this norm also has the property that 

Since the absolute value of the product of two real (complex) numbers 
is equal to the product of their absolute values, it follows that the set of all 
real (complex) numbers is a normed algebra when, as is usually the case, the 
norm is defined as the absolute value. 

It is easy to adapt the proof of part (d) of Theorem 7.7 to show that if {a,,} 
and { bt,} are sequences in a normed algebra A such that a,, -+ a and 6, -+ b, 
then 

at, btl -+ ab 

If, in addition, A is a commutative algebra with a unity, and if, for every n, 
an'  and a-' exist, then the proof of Theorem 7.8 can be adapted to show that 

Theorem 8.15: Let M be a subalgebra o j a  real (complex) normed alge- 
bra A. Then i@, the closure o j M ,  is also a subalgebra. 

Proof: According to Definition 8.13, it is sufficient to prove that if a and b 
are any two points of M ,  then for any two real (complex) numbers a ,  p 

and 
(8-14) 

(8-15) 

Theorem 7.4 shows that there are sequences {a,,} and {bt,} in M such 
that at, -+ a and b,, -+ b. Since M is an algebra, it follows that for every n 

and 

Parts (a) and (b) of Theorem 7.7 and the preceding remarks show that 
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and 

Hence, by applying Theorem 7.4 once again, we conclude that relations (8-14) 
and (8-15) hold. 

Theorem 8.16: Let X be a metric space and M be a real (complex) 
normed lineur space. Suppose that j :  X +  M and g : X + M and that f and g 
ure continuous ut a point p E X .  

(a) If cy1 und CY:! are scalurs, then c x I  f+  cx2g is continuous at p.  
(b) If M is also u normed algebra, t h e n j g  is continuous at p .  I j ;  in addi- 

tion, M is a commutative normed algebra with a unity in which every nonzero 
element has u multiplicative inverse and if the zero o j  M does not belong to 
the range of g, then f/g is continuous at p .  

Proof: Part (a). The proof follows immediately from Theorems 7.7 and 8.5. 
Part (b). The proof is an immediate consequence of Theorems 7.7, 7.8, 

and 8.5 and the remarks following Definition 8.14. 

The following corollary follows directly from the theorem and Definitions 
3.3 and 8.13. 

Corollary: Let X be any set and M be a real (complex) normed linear space. 
Then % ( X ,  M ) ,  the fami ly  of all continuous functions fr0m.X into M ,  is a 
linear subspace of F ( X ,  M ) ,  the fami l y  of all functions from X into M .  If, in 
addition, M is a real (complex) normed algebra, then % ( X ,  M )  is a subalgebra 
of F ( X ,  M ) .  

It is clear that, iff is a function from a set X into R", there are k functions, 
say f l ,  . . ., fi., each of which maps X into R' such that, at each point x E X ,  
f (x) = ( f i  (x), . . ., f i ; ( x ) ) .  The functions f 1  , . . ., fii are said to be the com- 
ponents of f and the notation f= (fl , . . . , f i i )  is used to indicate this rela- 
tions hip. 

Theorem 8.17: (a) A function f :  X +  R" is continuous at a point p E X 

(b) Iff: X +  R" and g :  X +  R" are continuous at a point p E X ,  then the 
if and only 8 its coordinates f i  , . . . , fii are continuous at p .  

function f * g : X +  R' is continuous at p .  

Proof: Part (a). The inequalities 
147 



ABSTRACT ANALYSIS 

show that, if J f (q )  - f ( p )  I < E ,  then, for 1 d j  d k, I f j (q)  - f j ( p )  I < E and 
that, if, for 1 d j  d k, Ifj(q) - f j ( p )  I < e / f i ,  then lf(q) - f ( p )  1 < E .  

Part (b). The second part of the theorem now follows from the first part 
and Theorem 8.16. 

R". To see this 

imply that 

It is not difficult to find continuous functions on R". For example, the func- 
tions pi : R"+ R'(1 d i d k )  defined by equation (8-10) are continuous on 

we merely note that the inequalities 

p i ( y )  -pi(%) I < E whenever ly-xl < 6=  E 

Since the constant functions are continuous, this shows that the set gk defined 
by equation (8-11) is a subset of the function algebra %(Rk, R1). Since the set 
9 of all polynomials in Zfk is the smallest subalgebra of F ( R k ,  R ' )  which con- 
tains g", we conclude that 9 C %?(Rk, R') .  This shows that all the poly- 
nomials in Zfk are continuous functions. 

Suppose V is a normed linear space and u, v E V. Then the triangle 
inequality JIu(I d IIu - 811 + llvll shows (after interchanging u and v) 

I IIUII - 114 I Ib - 41 
Hence the function f : Y+ R1 defined by 

f ( u )  = llull 

is a continuous mapping of V into R' (with the usuai metric). 
If f: X +  Y is a continuous mapping of the metric space X into V and g 

is defined on X by setting g ( x )  = Ilf(x)ll for all x E X ,  it follows from Theo- 
rem 8.6 that the mapping g : X +  R' is continuous on X .  

for all u E V 

Definition 8.18: A function from a set X to a metric space ( Y ,  d )  is said 
to be bounded if  its range is bounded. The set of all bounded functions from 
X into Y is denoted by B ( X ,  Y ) .  If Y is the real or complex numbers with the 
usual metric, the simpler notation 8 ( X )  ;s sometimes used. 

148 



CONTINUITY AND FUNCTION ALGEBRAS 

Thus, if the functionf: X +  Y is bounded, there is a finite number M such 
that d ( f ( X ) )  6 M .  Hence, for every x, y E X ,  d ( f ( x ) ,  f ( y ) )  d M .  If Y is a 
normed linear space, then this means that 

Hence, for any x and any fixed yo E X ,  

lF(4 II Ilf(x) -f (Yo) II + Ilf(Y0) I1 + Ilf(Y0) II 
Since I/f(yO)ll is a finite number, so is P=M+ llf(yo)II. Thus, for every x E x, 
there is a finite number P such that 

Therefore 
(8-16) 

On the other hand, if equation (8-16) holds, then, for any x, y E X ,  

IlfW -f(Y)II d Ilf(x)ll+ IlfW II 
IV(d --f(Y) II 6 2 p  

2 p  
Hence, 

lub 
% Y E X  

which shows that f is bounded. 

bounded if and only if there is aJinite number P such that 
Thus, we see that a function f from a set X to a normed linear space is 

For real or complex valued functions, where the norm is the absolute 
value, this definition reduces to the usual concept of boundedness. 

For example, suppose f: (0, 1)’ R 1  and, for each x E (0, l), f (x) = l/x. 
Then ll/xl=+ ~0 and f is not bounded. But if g : (0, 1)- R 1  is defined 

by g ( x )  = I/(  1 + x) for every x E (0, l), then I I/ (1 +x) I = 1. Hence g 
is bounded. 

Let M be a real (complex) normed linear space and let X be any set. If 
f: X +  M and g : X +  M and a and p are any real (complex) numbers, then for 
every x E X 

lub 
x E (3 ,1)  

lub 
x E (0 ,1)  
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Hence the function a! f + Pg is bounded whenever f and g are. If in addition M 
is a normed algebra, then for every x E X 

Hence 

Thus the function f g  is bounded whenever f and g are bounded. We therefore 
arrive at the following conclusion. 

Theorem 8.19: I f  X is any  set and M is a normed linear space, then 
98 ( X ,  M )  is a linear subspace of the linear space 9 ( X ,  M ) .  If in addition M 
is a normed algebra, then 98 ( X ,  M )  is a subalgebra of the algebra 9- ( X ,  M ) .  

The set of all continuous bounded functions from a set X into a set Y is 
denoted by q X ( X ,  Y ) .  Clearly 

vqx, Y )  =@ (x, Y )  n 9 (x, Y )  

Since the intersection of two linear subspaces is also a linear subspace and the 
intersection of two subalgebras is also a subalgebra, it follows that i f M  is a 
normed linear space and X is any  set, then q X ( X ,  M )  is a linear space. If in 
addition M is a normed algebra, then q x ( X ,  M )  is an algebra. 

There are some interesting relations between continuity and compactness. 

Theorem 8.20: Iff is a continuous function from a compact metric 
space X into a metric space Y ,  then f (XI is a compact subset of Y. 
Proof: Choose any open cover { V , l a E A }  of f ( X ) .  Then 

f ( X )  c u v, 
a E A  

It follows from tables 4 4  and 5-11 that 

XCf-'Cf(X)l cf-'[ (UEA u Val= (UEA u f-l(V,) 
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Now Theorem 8.7 shows that, for each a E A ,  the set f-'(V,) is open. Hence 
the collection if-' ( V,) la E A }  is an open cover of X and since X is compact 
there is a finite subset of A ,  say {al, . . ., atl} ,  such that 

XCf-'(V,,) u . . . u f-'(V,,) 
Table 4 4  shows that 

and this shows that f ( X )  is compact. 

The following corollaries give some useful consequences of this theorem. 

Corollary 1: I f f  : X +  Y ,  f is continuous on X ,  X is a compact metric 
space, and Y is a metric space, then f is bounded and its range is a closed subset 

Proof: Theorem 8.20 shows us that the range off, f ( X )  , is compact and The- 
orem 6.22 shows that, as a consequence, it is closed and bounded. 

of Y.  

The remarks following Definition 8.18 show that, if in addition Y is a normed 
linear space, there is a finite number M such that sup I I f  (x) I I d M .  The next 

corollary shows that this result is even more significant when the normed linear 
space is R'.  

X € x '  

Corollary 2: Let f be a real-valued continuous function defined on the 
compact metric space X and let U= sup f (x) and L= inf f (x). Then there are 

points p and q of X such that f ( p )  = U and f ( q )  = L. 
Proof: The preceding corollary and the remarks following it imply that 
f ( X )  = { f (x) Ix E X }  is closed and that there is a finite number M such that 
lub I f ( x )  I d M .  Since, for every x E X ,  

f (4 d If (4 I M and - f ( x )  d If(x)l d M  

* E X  x € X  

x € X  

we see that sup f (x) d M and - inf f (x) = sup ( -  f (x)) d M ;  that is, - M  d 
x EX x E X  x € X  

inf f (x). Since M is finite, these inequalities show that f ( X )  is bounded above 

and below. Hence it follows from Theorem 6.14 that f ( X )  contains its least 
upper bound U and its greatest lower bound L and this proves the assertion. 

x € X  
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Thus the corollary says that there are points p and q in X such that 
f(q) ~ f ( x )  ~ f ( p )  for all x E X .  

These two corollaries to Theorem 8.20 would not remain true if the 
compactness of the metric space X were replaced by some weaker condition. 
In order to show this, suppose that the metric space X is a noncompact subset 
of the real numbers with the usual metric and that Y = R 1 .  According to the 
Heine-Bore1 theorem (Theorem 6.31), X is either not closed or not bounded. 

Suppose first that X is not closed and let x g  be a limit point of X which 
is not a point of X .  We can define functions fi : X +  Y a n d b  : X +  Y by 

for every x E X I 1 f i b )  == 
bb) = 1 + ( x - x g ) 2  

1 

Since the denominators offi a n d b  never vanish on X (since x g  B: X )  , Theorem 
8.16 shows thatfi a n d 5  are continuous. Now I f i (x )  I = l/Ix-xol and!d&(x)=l. 

Since x g  is a limit point of X ,  for any positive number E,  we can find an x 'E X 
for which Ix-xoI < E .  This shows that ,159 I f i (x )  I =+m; that is, fi is not 

bounded. Since xo 4 X ,  it is clear that f i ( x )  < 1 for every x E X ;  thus fi(x) 
# lub & (x) for any x-E X .  

Now suppose that X is not bounded. This means that, for any finite number 
M ,  there is a point x E X  such that 1x1 Z - M .  In this case let us define the 
functions fi : X+ Y a n d b  : X +  Y by 

X E X  

Since the denominators of fi and 5 also do not vanish, Theorem 8.16 again 
shows that fl and f2 are continuous. Clearly, 

lub Ifi (x) I =+ m 
XEX 

and 

Also, 
&(x) < 1 for every x E X 
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Thus, f1 is not bounded andfi  never attains its maximum. 
In any case, we have shown that there exists on any noncompact set of 

real numbers a continuous function which is not bounded and a continuous 
function which does not attain its maximum. 

Theorem 8.21: I f f  : X+ Y is a continuous bijection f rom the compact 
metric space X to the metric space Y ,  then the inverse mapping f-' (which is 
defined on Y )  is continuous. 

Proof: Since (f-l)-l=f, we see from Theorem 8.7 that the conclusion of 
the theorem will follow if we can prove that f( V )  is an open set in Y for every 
open set VinX. 

Therefore suppose V is any open set in X. Then its complement Vc is 
closed and so Theorem 6.23 implies that Vc is compact. If g is the restriction 
off to Vc, then corollary 2 of Theorem 8.7 shows that g is continuous. Hence 
it follows from Theorem 8.20 that g(Vc) is compact and, since f (Y")  = g( V c )  , 
we conclude that f ( V c )  is a compact subset of Y. Theorem 6.22 therefore 
shows that f ( V c )  is closed. It is not hard to verify that, since f is a bijection, 
f ( V c )  = cf( V ) ]  c .  Hence we conclude from Theorem 6.10 that f ( V )  is open. 

If the spaceX is not compact, we can show by example that the theorem 
does not hold. Let C be the unit circle and let the functionf:[O, 27r)+C be 
defined by 

f ( t )  = (cos t ,  sin t )  for all t E [0,27r) 

Since the sine and cosine are continuous functions, Theorem 8.17 shows 
that f is also. Clearly f is a bijection but its inverse f-' is not continuous at 
the point (1, O } .  

Definition 8.22: If (X, d )  and ( Y ,  d ' )  are metric spaces and f : X +  Y,  
the function f is said to be uniformly continuous on X i f ,  f o r  every E > 0,  there 
exists a single 6 > 0 such that 

There is one very important difference between the concepts of continuity 
and uniform continuity. Continuity is defined at each point of a set and, if a 
function is continuous at some point of the set, then, for each E > 0, there is a 
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6 > 0 depending on E and on the point p which satisfies the requirements of the 
definition. On the other hand, if a function is uniformly continuous on a set, 
then, for each E > 0, one can find a single number 6 depending only on E which 
satisfies the requirements of the definition at every point of the set. Of course, 
uniformly continuous functions are continuous at every point of their domain, 

Constant mappings and natural injections are uniformly continuous 
functions. 

For any nonempty subset A of a metric space ( X ,  d ) ,  the mapping 
f : X 4  R defined by 

f(x) = d ( x ,  A )  for all x E X 

is uniformly continuous. This follows immediately from the inequality (6-14). 

Theorem 8.23: Iff is a continuous mapping of the compact metric 
space ( X ,  d )  into the metric space (Y, d ' ) ,  then f is un$ormly continuous on X .  
Proof: Fix E > 0. Since f is continuous on X ,  we can find a positive number 
h ( p )  for each point p E X  such that 

f [ B ( p ;  2h (P) ) l  c B d f ( p 1 ;  4 2 )  

Since X is compact and { B ( p ;  h ( p ) )  I p E X }  is an open cover of X ,  we can 
find finitely many points of X ,  say p l ,  p2, . . . , pn, such that 

X c U B ( p 1 ;  X ( P i ) )  
i= 1 

Set 6= min h(pi). Clearly 6 > 0. Now let q be any point of X .  Then, for some 

integer j ,  such that I S j S n ,  

If y E B ( 4 ;  6) , then 

1 e r s n  

4 E H P j ;  U P j ) )  

(8-17) 

So that in particular, 
f ( 4 )  E B ( f ( P j k  E m  
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and, since q was any point of X ,  this proves the theorem. 

For functions defined on segments of the real line, the concepts of right 
and left hand limits are sometimes useful. 

Definition 8.24: Let f be a function on the segment ( a ,  b )  and let g ,  be 
the restriction off to (x, b )  for  a d x < b. If lim g x ( t )  exists, it is called thfe 
right hand limit off at x and is denoted by f (x+). The left hand limit is 
defined in a similar way by using the restriction off to ( a ,  x). 

t - + x  

It is clear that lirr f ( t )  exists if and only i f f  (x+) = f (x-) = b-5 f ( t ) .  
When these concepts are used it is possible to characterize two types of dis- 
continuities for functions defined on a segment of the real numbers. 

Definition 8.25: Iff : ( a ,  b )  + X ,  f is discontinuous at x E ( a ,  b )  , and 
both f (xt) and f (x-) exist, then f is said to have a discontinuity of the first 
kind at x. All  other discontinuities off are called discontinuities of the second 
kind. 

Evidently a function can have a discontinuity of the first kind in the fol- 
lowing two ways: 

(4 fb+)  W x - 1  
(b) f ( x + ) = . f ( x - )  + f ( x )  

The function defined in the example following Theorem 8.7 has a discontinuity 
of the first kind (see fig. 8-3). Dirichlet’s function (see example following 
corollary 2 of Theorem 8.7) has a discontinuity of the second kind at every 
point. 

As in the case of sequences we introduce the concept of monotonic 
functions. 
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26:  A function f :  ( a ,  b )  -j R 1  is said to be ~ ~ ~ o ~ ~ n ~ c a ~ l y  
increasing on ( a ,  6 )  if a < x < y < b implies that f (x) d f ( y ) .  Reversing 
the latter inequality yields the definition of a monotonically decreasing 
function. 

Theorem - 8.21: I f f  is monotonically increasing on (a ,  b), then, for  every 

(a) f (x-) = sup f (s) s f (x) d inf f (s) = f (x+) 

(b)f(x+) S f ( y - ) ,  f o r a < x < y < b  

x E ( a ,  b ) ,  

s E ( a ,  x) s E (x. b )  

Proof: Part (a). Let g, be the restriction offto ( a ,  x) . Sincefis monotonically 
increasing, E l =  { f ( t )  It E ( a ,  x)} is bounded above byf(x). The least upper 
bound A of this set therefore exists, and A d f (x). Fix E > 0. Evidently A - E 

is not an upper bound of E,. Hence there exists a 6 > 0 such that a < x - 6 < x 
and 

A - E <  f ( x - 6 )  < A  (8-18) 

Sincefis monotonic it follows thatf(x - 6) ~ f (  t )  G A for all t E (x - 6, x) . 
Combining this with equation (8-18) shows that f ( t )  E ( A  - E ,  A ]  whenever 
t E (x- 6, x). Hence, 

f ( ( x - 6 , x ) )  c ( A - € , A ]  c (A- -E ,A+E)  
(8-19) 

Since (x-6, x). C ( a ,  x), 

gx((x--, x>>=f((.-s, 4 )  (8-20) 
Evidently 

( x -6 ,  X) = (x-8, x+Ti) n ( a ,  X )  -{x} (8-21) 

It now follows from equations (8-19), (8-ZO), and (8-21) that 

g , ( ( x -6 , x+6)  n ( a , % ) - { % } )  c ( A - E , A + E )  

Since E was arbitrary, this implies that 

f(x-)=limg,(t)=A=lub Ex= sup f ( s )  
t - + x  s E (a, x) 

An almost identical argument proves the other half of part (a). 
Part (b). This follows almost immediately from part (a) since 
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f ( x + ) =  inf f ( t )  = inf f ( t )  
f E (x. b )  t E ( x .  y) 

and 

Corollary: A monotonic function cannot have a discontinuity of the 
second kind. 

Theorem 8.28: The set E of points at which a monotonic function f 
dejined on (a, b)  is discontinuous is countable. 
Proof: Let f be increasing. Theorem 8.27(a) implies that if x E E ,  then 
f(x- ) < f ( x + ) .  Hence, there exists a ratianal number r ( x )  such that 

Since Theorem 8.27(b) shows that x < y implies f (x+) s f ( y - ) ,  we conclude 
that x # y implies r(x) # r ( y ) .  In this way we associate a rational number with 
each x E E and no two members of E are associated with the same rational 
number. This defines an injective mapping from E to the set of rationals and 
hence (since every mapping onto its range is surjective) a bijection from E to 
a subset of the rationals which according to corollary 1 to Theorem 4.16 must 
be countable since the rationals are. Hence E is countable. 

In discussing the convergence of sequences we have shown how we could 
extend the notion of convergence to include certain types of divergent se- 
quences (improper convergence) by extending the notion of ball about a point 
to include balls about the points + m  and --cc) in the extended real number 
system. In view of the close relation shown in Theorem 8.2 between the exist- 
ence of limits of functions and the convergence of sequences, it is not sur- 
prising that we do the same thing with the limits of a function. Thus we make 
the following definition. 

For the purposes of this definition let us temporarily call the half-open 
intervals [- a, a )  and ( b ,  + m] balls for all finite real numbers a and b. 

Definition 8.29: Let E be any  set ofjinite real numbers and let f :  E -+ R' .  
I f  p is any extended real number such that, f o r  every ball B about p ,  
B n E - ( p )  # (4, then we write 
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if there exists an extended real number q with the property that, for  every ball 
B' about q, there exists a ball B about p such that 

f ( ~  n E )  c B' 
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CHAPTER 9 

Cauchy Completeness of a Metric Space 
This chapter begins by introducing two types of mappings between metric 

spaces. The first and most general of these, the homeomorphism, preserves 
the topological properties of the spaces and the second, the isometry, pre- 
serves the metric properties. A study of these mappings helps to give a cer- 
tain amount of insight into the nature of both the topological and the purely 
metric properties of metric spaces. We then turn to a discussion of an impor- 
tant type of sequence called the Cauchy sequence. This discussion leads, in 
a natural way, to the purely metric concept of a complete metric space. At 
this point the concept of isometry is used to show that every metric space can 
in a certain sense be embedded in a complete metric space. 

If there is a mapping f between two metric spaces which, aside from 
putting these two spaces into one-to-one correspondence, preserves the dis- 
tance between the corresponding elements, then as metric spaces they will 
have the same properties. Thus, if a particular subset of one of these spaces 
is bounded, the image of this subset under f will also be a bounded subset in 
the other metric space. If one of these spaces has any property that can be 
defined in an abstract metric space the other will have it also. Before defining 
this type of mapping which preserves metric properties, we shall define a 
more general mapping which preserves topological properties. 

Definition 9.1: Two metric spaces ( X ,  d )  and ( Y ,  d ' )  are said to be 
homeomorphic if there is a bijection f from X to Y such that both f and f-' 
are continuous. The mapping f is then called a homeomorphism. 

It can be seen, for example, that the mapping f: R + R 1  defined by 

f (x) = x 3  for every x E R1 

is a homeomorphism. 
Suppose f :  X +  Y is a homeomorphism. From Theorem 4.8(c) we see 
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that, since f is bijective, the mapping induced by f i s  a bijective mapping from 
the collection of all subsets of X to the collection of all subsets of Y. If E is 
any open subset of Y ,  Theorem 8.7 shows that f - ' ( E )  is an open subset of X .  
It was pointed out in chapter 4 that f(f-* ( E )  ) =E.  Hence we conclude that, 
for every open subset E of Y,  there is an open subset G ofX such that E = f (  G). 
On the other hand, since (f-')-' = f and since f-' is continuous, Theorem 8.7 
implies that, if G is any open subset of X ,  there is an open subset E of Y such 
that E = f ( G ) .  It follows from these remarks that the mapping induced byf 
puts the open subsets of X into one-to-one correspondence with the open 
subsets of Y. 

A little thought now shows that, if the metric spaces ( X ,  d )  and ( X ,  d ' )  
are homeomorphic, they must also have the same topological properties. 
Since many of the properties we have discussed in connection with metric 
spaces were in fact topological, this type of mapping is rather significant. 

For example, from the discussion of topological spaces in chapter 6, 
we see that, if x is an adherence point of a set E C X ,  thenf(x) is an adherence 
point of the set f ( E )  C Y. 

Suppose that dl and dz are two distances defined on a set X .  Then, as 
mentioned in chapter 6, ( X ,  dl) and ( X ,  dz) are distinct metric spaces even 
though they both have the same underlying set. If i is the identity map on X ,  
then i can be considered a mapping from the metric space (X, d l )  onto the 
metric space (X, dz). Clearly i is a bijection and is its own inverse. Hence 
the inverse of this mapping is i, now regarded as being a function from the 
metric space (X, dz) onto the metric space ( X ,  d l ) .  Thus if i is both a con- 
tinuous mapping from the metric space ( X ,  d l )  into the metric space (X, dz) 
and a continuous mapping from the metric space ( X ,  &) into the metric space 
( X ,  d l ) ,  it must be a homeomorphism. In this case the distances dl and dz 
are said to be (topoZogicaZZy) equivalent since they both determine the same 
topology for X .  If i is both a uniformly continuous mapping from ( X ,  dl) onto 
(X, d2) and a uniformly continuous mapping from (X, d2) onto (X, dl), then 
the metrics dl and dz are said to be uniformly equivalent. A sufficient con- 
dition that dl and dz be uniformly equivalent metrics on X is that there exist 
two (finite) real numbers a > 0 and b > 0 such that 

a d l ( p ,  q )  & ( P ,  q )  b & ( p ,  q )  for a b ,  q E X  

As pointed out in chapter 6 any two of the three metrics defined by 
equations (6-5) to (6-7) on the product space of two metric spaces satisfy these 
inequalities. It was also pointed out in chapter 6 that the Euclidean space R k  
and the product space of the Euclidean spaces R s  and R k - s  are different 
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metric spaces even though they have the same underlying set. However, the 
preceding discussion shows that these two metric spaces have uniformly 
equivalent metrics. 

Suppose that f is a homeomorphism from a discrete metric space X onto 
a metric space Y. The first corollary to Theorem 6.12 shows that every subset 
ofX is open. Since every subset of Y is also the image underfof a subset ofX, we 
see that every subset of Y is also an open set. On the other hand, if ( Y ,  d )  is any 
metric space having the property that all of its subsets are open, we can define 
a discrete metric d ’ on Y as indicated in the examples following Definition 6.1. 
Then ( Y ,  d ’) is a discrete metric space. It is not hard to verify that the identity 
map of Y is then a homeomorphism of the metric space ( Y ,  d ’ )  to the metric 
space ( Y ,  d ) .  Hence we conclude that a metric space is homeomorphic to a 
discrete space if and only if all its subsets are open sets. 

It is standard practice to call any metric space which is homeomorphic 
to a discrete metric space a discrete space. This convention is actually an 
incorrect use of the language since a metric space which is homeomorphic to 
a discrete space may have a distance between points which is different from 
zero or one. 

If a metric space X is both homeomorphic to a discrete space and compact, 
then it must be finite. In order to see this, notice that each one-element subset 
of X is open. Hence the family 0 = {{x} I x E X} is an open cover of X and 0 
can only have a finite subcover if X has finitely many points. 

Conversely, if X is a finite metric space, then it must be both compact and 
homeomorphic to a discrete metric space. In order to see this, notice that each 
one-element set of X is certainly closed. Since every subset of X is a finite 
union of such sets, corollary 2 to Theorem 6.12 shows that every subset of X 
is closed. Hence, Theorem 6.10 shows that every subset of X is open. Thus Xis  
homeomorphic to a discrete space. Finally, since there are only a finite number 
of open sets, every open cover of X is finite and so X is trivially compact. Thus 
a metric space is finite if and only if it is both compact and homeomorphic to 
a discrete metric space. 

Definition 9.2: Two metric spaces (X, d )  and ( Y ,  d ’ )  are said to be 
isometric if there is a bijection f f rom X to Y such that, for  any two points 
x, Y E  x, 

4% Y )  = d’ (f (4 7 f (Y) 1 
The mapping f is then called a n  isometry. If E is any  subset of X, f ( E )  is 
called the isometric image of E (under f). 
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f ( x > = ‘  

It is easily seen that an isometry f and its inverse f-I both satisfy the 
conditions of Definition 8.3 with 6 = E .  This shows that an isometry is also a 
homeomorphism (which is as it should be since isometries preserve metric 
properties and homeomorphisms preserve topological properties, and every 
topological property is also a metric property). 

Let the two metric spaces in Definition 9.2 both be Rf ,  and let f be the 
mapping which takes each real number y into the real number y f  c where c is 
some fixed real number. Then f is an isometry. 

An example of an isometry that has already been discussed in a much less 
formal way is the mapping f from the Euclidean space R2 to the set of all 
complex numbers (with the distance defined in the usual way) which associates 
with each point % = ( X I ,  x2) of R2 the complex number z==xl+ixz. It has 
already been established 26 that if zl=,f(x1) and zz=,f(x2),, then 121 -221 

= 1x1 -xzl and the mappingfis clearly a bijection. We have in fact considered 
these two spaces to be the same. This can often be done when two metric 
spaces are isometric to one another. 

If X and X ’  are any two isometric metric spaces, then for any theorem 
proved in X that involves only distances between points of X there is a corre- 
sponding theorem that holds in the metric space X ’ .  

If ( X ,  d )  is a metric space andfis  a bijection from an arbitrary set X’ to 
X ,  then it is not hard to see that we can define a distance d’ onX’ by 

’ X  - m < x < + m  lflxl 
1 x=+m 

\-1 x=-CO 

is a bijection from R onto [- 1, 11. 

e6 See discussion following Definition 6.1. 
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Since [ - 1, 11 is a metric space when the distance is defined (in the usual 
way) in terms of the absolute value, we can use the process described in the 
preceding paragraph to define a distance d on by 

d(x ,  y )  = I f  (4 -f ( Y )  I for all x, Y E R 
The metric space (E, d )  is sometimes referred to as the extended real line. 
Notice that if x >, 0, d(x ,+ a) = I/ (1 + 1x1) and if x f 0 then d( -m,  x) 
= 1/ (1 + 1x1 ). Hence d ( x ,  + a) < E and x 2 0 implies x > I/E - 1 and d(-a ,  x) 
< E and x f 0 implies x < 1 - l / ~ .  It is now easy to see that a sequence of 
points of R' converges improperly ;f and only if it converges to $. or - 03 as 
a sequence in the metric space ( R ,  d )  . 

We now introduce the important concept of Cauchy sequence. 
Definition 9.3: A sequence {xn} in a metric space ( X ,  d )  is called a 

Cauchy sequence if ,  f o r  every E > O ,  there is an integer N such that, for  
every m and n greater than N ,  

If dl and dz are topologically equivalent metrics on a set X ,  a sequence 
{ p n }  in X may be a Cauchy sequence in the metric space ( X ,  d l )  but not 
in the metric space ( X ,  dz). However, it is, easy to show that if dl and dz are 
uniformly equivalent, then both metric spaces have the same Cauchy se- 
quences. 

Suppose { p n }  is a sequence in the metric space ( X ,  d ) .  For every positive 
integer N ,  set 

EN={pnln  a N }  

It follows from a comparison of Definitions 6.20 and 9.3 that {pn} is a Cauchy 
sequence if and only if 

d(EN)  = o  
N - t m  

The next theorem will be useful in our study of Cauchy sequences. 

Theorem 9.4: For any  subset E of the metric space ( X ,  d )  , d ( E )  = d ( E ) .  

Proof: Since E C E ,  it is clear that 
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d ( E )  d ( E )  

To show that the opposite inequality holds, let E > 0 be given and let p and q 
be any two points of E .  Since p and q are adherence points of E ,  we can find 
points p" and q* in 2 such that p" E B ( p ;  E )  and q* E B ( q ;  E ) .  Then, 

d ( p ,  q )  d ( p ,  P*> + d ( p * ,  q * )  +d(q* ,  4 )  < 2 ~ + d ( ~ * ,  4")  d 2 ~ + d ( E )  

Hence, Z E +  d ( E )  is an upper bound 'of { d ( p ,  q )  Ip, q E E } ,  and 

d ( E )  = lub- d ( p ,  q )  d 2 ~ + d ( E )  
P . q E E  

Since this must be true for every E > 0, we conclude that 

Therefore, d ( E )  d d ( E )  

d ( E )  = d ( E )  

Theorem 9.5: Every convergent sequence is a Cauchy sequence. 

Proof: 27 Suppose {pn}  converges to p in the metric space ( X ,  d ) .  Then for 
every E > 0, we can find an integer N such that n b N implies d(pn,  p )  < ~ / 2 .  
Hence, for m, n b N ,  

d(pm, 

Definition 9.6: A metric space is said to be complete if every Cauchy 
sequence in this space converges. I f  a normed linear space is also a complete 
metric space, it is called a Banach space. I f  a normed algebra is a complete 
metric space, it is called a Banach algebra. 

In a complete metric space, we can assert whether or not a given sequence 
converges without specific knowledge of its limit. For example, in the case of 
infinite series (which we shall see are nothing more than sequences in normed 
linear spaces), all the tests for convergence depend on completeness. 

In complete metric spaces, then, one has only to establish whether or not 

*' Notice that, in proving this theorem, it is not necessary to require the distance between points in the metric 
space X to be finite. This fact will be used in chapter 11. 
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a given sequence is a Cauchy sequence to find whether or not it converges. 
This is known as the Cauchy criterion of convergence. 

The remarks following Definition 9.3 show that, like boundedness, the 
definition of a Cauchy sequence can be expressed in terms of the diameters 
of certain sets. Since we have already pointed out that boundedness involves 
the metric too intimately to be a topological property (see comments following 
Theorem 6.22), it is not too surprising that completeness does also. 

The next theorem gives a useful characterization of completeness which 
will be used to show that two very important classes of metric spaces are 
complete. 

m 

Theorem 9.7: A metric space ( X ,  d )  is complete if and only if n Fi +@ 

for  every nested sequence of nonempty closed and bounded sets {F i }  such that 
lim d(Fn)  = 0. 

Proof: Let ( X ,  d )  be complete and let {Fi}  be a nested sequence of non- 
empty closed and bounded sets such that lim d(Fn)  = O .  For each integer n 
choose a point Pn E Fn. Since Fm C Fn for m 2 n, we see that P m  E F n  when- 
ever m 3 n. Let E > 0 be given and choose N such that d(FN) < E .  Then Pm, 
Pn E F N  for all m, n 2 N .  Hence, d(pm,  P n )  d d(FN) < E .  This shows that the 
sequence {pn} is a Cauchy sequence. Now becauseX is complete, there exists 
a p E X such that lim Pn=P. Evidently, for each n, the sequence Pn+l,  Pn+2, 

pn+3, . . . is a subi:&ence of {pn} and therefore must also converge to p .  
Since (according to the remarks preceding Theorem 7.16) p is an adherence 
point of the range of Pn+l, Pn+2, pn+3, . . . and since every term of this se- 
quence belongs to Fn, Theorem 6.8 shows that p is also an adherence point of 
Fn. But Fn is closed and therefore p E Fn. Since n was any positive integer, 
this shows that p E Fn for every n. Hence, 

i =  1 

n-+ w _ _  - 

n+m 

P E  f i F n  
n=l 

which proves that 

m 

Conversely, suppose that n Fi # 0 for every nested sequence of non- 
i= 1 
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empty closed and bounded sets {Fi} such that d ( F i )  + 0, and let {p,,} be a 
Cauchy sequence. §et E,,= {pili 3 n}.  According to the remarks following 
Definition 9.3, 

lim d ( E , , )  = 0 

Clearly E,, 3 E,,+,. Hence Theorem 6.8 shows that E,, 3 E, , , ,  . Theorem 9.4 
implies that lim d(E , , )  = 0 and that d ( E 1 )  = d(E1).  A proof analogous to that 

of Theorem 7.5 2x shows that E1 , the range of the Cauchy sequence, is bounded. 
Hence, E1 is bounded. Thus { E , { }  is a nested sequence of nonempty closed 
and boundej sets such that d(E, , )  + 0, and so, by hypothesis, there exists a 
point p E (l E,, . That is, p E E,, for every n. Now let E < 0 be given and choose 

N such that 

Since p E E.v and E.v C E.v, 

n-+s 

n-+ 

1 1 = 1  

d(E,v)  < E 

d(p , , ,  p )  d ( E s )  < E 

for every p,,  E E ,  and, therefore, for every p,, with n 3 N .  This shows that 
p,,+ p .  Since { p a }  is an arbitrary Cauchy sequence, it follows that X is 
complete. 

Corollary 1: The Euclidean space R” is complete. 
Proof: The Heine-Bore1 theorem (‘l’heorem 6.31) shows that every closed and 
bounded set in R k  is compact. Therefore the corollary to Theorem 6.27 shows 

Let 

ZH The sequence {p ! , }  is a Cauchy sequence. Hence, there exists an N such that. for n apd. 

d(P,r, P S )  < 1 

p=’llax { ( ! ( P I .  /I.\). C f ( / ) , .  P Y ) .  . . .. d ( / ) \ - , .  />,\), I} 

Then, since, for evrry ti 

/),, E B(/ , .s:  p )  

the range E ,  of {p , , }  is a subset o t ‘ B ( p Y :  p ) .  Now 

Hence. 
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that every nonempty nested sequence of closed and bounded sets whose 
diameters tend to zero has a nonempty intersection. 

Corollary 2: Every compact metric space is complete. 
Proof: According to Theorem 6.23, every closed subset of a compact metric 
space is compact. Hence, the corollary to Theorem 6.27 shows that every 
nonempty nested sequence of closed and bounded sets whose diameters 
tend to zero has a nonempty intersection. 

There are in fact certain analogies between compact metric spaces and 
complete metric spaces. 

Theorem 9.8: If E is a complete subspace of the metric space X ,  then E 
is a closed subset of X .  
Proof: Let p be any adherence point of E. By Theorem 7.4, there is a sequence 
of points of E which converges to p.  Theorem 9.5 shows that this sequence 
must be a Cauchy sequence. By hypothesis, every Cauchy sequence in E 
converges to a point of E and s o p  E E. This, of course, shows that E is closed. 

Theorem 9.8 should be compared with Theorem 6.22. 
Theorem 9.9: If E is a closed subset of the complete metric space ( X ,  d )  , 

then the subspace ( E ,  d )  is complete. 

Proof: If {p,} is a Cauchy sequence in E ,  then {p,} is also a Cauchy sequence 
in X .  Since ( X ,  d )  is complete, there exists a point p E X such that pn+p. 
Theorem 7.4 shows that p is an adherence point of E. Since E is closed, this 
means that p E E. Hence {p,} converges in the metric space ( E ,  d) .  

Theorem 9.10: The direct product o j  two complete metric spaces is 
complete. 
Proof: Let ( X ,  d )  and ( Y ,  6) be complete metric spaces. Suppose that 
{(p,, 4,)) is any Cauchy sequence in the direct product ( X  X Y ,  d x )  of ( X ,  d )  
and ( Y ,  6). Since for all m and n, 

and 

it follows immediately that {p,} and {q,} are also Cauchy sequences. Because 
( X ,  d )  and (Y ,  6) are complete, {p,} converges in X and {q,} converges in Y. 
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Hence Theorem 7.9(a) shows that { (p,, q n ) }  converges in (XX Y ,  d x ) .  Since 
{(p, ,  q,)} is an arbitrary Cauchy sequence, this completes the proof. 

If E is any nonclosed subset of a metric space ( X ,  d ) ,  then there must 
be a limit point p of E such that p E. Since p is also an adherence point 
of E ,  Theorem 7.4 shows that there is a sequence {p,} of points of E which 
converges to p and to no other point. Theorem 9.5 shows that {p,} is a Cauchy 
sequence. Now {p,} is also a Cauchy sequence in the subspace ( E ,  d )  but 
does not converge to any point of E ;  hence, E is not a complete metric space. 
This shows that there exists a large class of metric spaces which are not com- 
plete. For example, let E be the interval (0, 1)  and let X be R 1  with the usual 
metric. Then the sequence { l / n }  is certainly a Cauchy sequence in R1 and 
it converges to 0 $5 ( 0 , l ) .  Therefore { l / n }  is not a convergent sequence in 
the subspace E. In cases like this, it is always clear how we can extend the 
metric space to obtain a complete metric space. 

On the other hand, there are many cases of incomplete spaces where the 
situation is not so simple. For example, let 9 be the set of all Riemann 
integrable functions on the interval [a ,  b ] .  It is not hard to see 29 that the 
function d : 9 X 9+ R defined in terms of the Riemann integral (this is the 
usual integral we learn about in elementary calculus) by 

is a metric on 9. But it turns out that this space (or any subspace of this space) 
is not complete. If one introduces the concept of Lebesgue integration and 
increases the space of functions 30 to include all Lebesgue integrable functions, 
then complete spaces of the previous type are obtained.31 This is one of the 
important reasons for the abandonment by mathematicians of the Riemann 
integral in favor of the Lebesgue integral. 

This is our second encounter (see remarks following Definition 6.1) 
with this type of function space. Since the Lebesgue integral is not developed 
here, we do not pursue this topic any further. However, other types of function 
spaces will be encountered subsequently, and we shall discuss them in some 
detail. 

29 Provided we take for granted the fact that the integral in question always exists. 
30 Every Riemann integrable function is also Lebesgue integrable. 
31 Actually, the points in these spaces are not functions themselves, but each point is an equivalence class whose 

members are those functions which differ from one another on sets that are in a certain sense negligibly small. 
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In any event, it is very important in mathematics to be able to assert the 
existence of limits of certain sequences and, as a result, completeness is a 
very desirable property. It is not in the least unimportant then that, in a cer- 
tain sense which we now define, every metric space can be regarded as a 
subset of a complete metric space. 

Definition 9.11: Let ( X ,  d )  be a metric space. I f  there is a complete 
metric space ( X " ,  d")  and if there is a dense subset Xo of X"  such that ( X ,  d )  
is isometric to the subspace(X0, d" ) ,  then ( X * ,  d")  is said to be a completion 
of ( X ,  4 .  

It shall be proved, that every metric space has a completion in the sense 
of this definition. In the proof the metric space ( X " ,  d " )  is constructed from 
the metric space ( X ,  d ) .  It must be emphasized, however, that with this con- 
struction the metric space ( X ,  d )  is not a subspace of ( X " ,  d" )  but is only 
isometric to a subspace of ( X " ,  d " ) ;  that is, ( X ,  d )  and ( X o ,  d")  have the 
same abstract properties when considered as metric spaces. For many purposes 
this is good enough. However, one can go even further and actually embed 
( X ,  d )  in ( X " ,  d" )  since, from the metric spaces ( X ,  d )  and ( X " ,  d " ) ,  we can 
form the set 

x u (X"-XO) 

and define a suitable metric on this set from the metrics d and d". Even if 
this is done, those limits of the Cauchy sequences inX which are points of the 
set X" -Xo are still different objects from the points in the original set X and 
so, for many purposes, it is much more desirable to start out with a complete 
metric space. 

In Definition 4.10 we introduced the concept of equivalence relation. 
Before proving that every metric space has a completion, we must establish 
some properties of this relation. 

Definition 9.12: A collection 9 of nonempty subsets of a set S is called 
a partition of S ih for  each element s E S ,  there is exactly one set E E 9 
such that s E E. 

Thus, each element of S is in at least one member of 9 and no element 
of S is in more than one member of 9. 

Definition 9.13: Let - be an equivalence relation in S. For each s E S ,  
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the subset $(s) of S defined by 

$(s) ' { t  E S(S - t }  

is called an equivalence class of -. The collection of all equivalence classes 
is called the quotient set of S by -. 

Theorem 9.14: Let - be an equivalence relation in a set S and, for each 
s E S ,  let $(s) be the equivalence class { t  E Sls - t }  of -. Then, for  any  two 
e l emen t s sand t  o f S , s - t  i f a n d o n l y i f $ ( s ) = $ ( t ) .  

Proof: First let s - t and let x be any member of $ ( t ) .  Then t - x. From the 
transitivity of -, it follows that s - x, which shows that x E $(s). Since x was 
arbitrary, we conclude that $ ( t )  C $(s). Since - is symmetric, we see that 
t - s. Hence, we can repeat the argument just given to show that the opposite 
inclusion holds and, therefore, that $ ( t )  = $(s). 

Now let $(s) = $ ( t ) .  Since - is reflective, it follows that t E $ ( t )  =$I(s). 
That is, s - t. 

Theorem 9.15: If - is an  equivalence relation in a set S and 
Q =  { $(s) I s E S }  is the quotient set of S by  -, then Q is a partition of S. 
Proof: Choose any element s E S. Evidently s - s. Hence s E $(s). Therefore 
there is at least one element of Q which contains s. Hence suppose that E 
is any member of Q such that s E E. It follows from the way Q was constructed 
that we can find a y E S such thatE= $(y). Sos E $ ( y ) .  This means that y - s 
and therefore Theorem 9.14 shows that $(s) =$(y) = E .  We conclude from this 
that the only member of Q which contains s is $(s). And this proves the theorem. 

We are now ready to prove that every metric space has a completion. 

Theorem 9.16: Every metric space ( X ,  d )  has a completion ( X * ,  d * )  and 
any  other completion of ( X ,  d )  is isometric to ( X * ,  d*) .  

Proof: Let {x,} and {y,} be any two Cauchy sequences in ( X ,  d ) .  We write 
{x,} - {y,} if and only if 

(9-1) lim d ( x n ,  y,) = 0 
n-+ 

Since the proof of the theorem is quite long, it is divided into parts. 

sequences in ( X ,  d )  . 
Part (a). The relation - is an equivalence relation in the set S of all Cauchy 
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First, since, for every sequence {x,} E S, 

we conclude that {x,} - {x,}; that is, - is reflexive. Since d ( x n ,  y,) = d(yn ,  x,), 
it follows that {x,} - {y,} implies {y,} - {x,}. 

Finally, suppose {x,} - {y,} and {y,} - {z,}. Then given E > 0, we can 
find integers N1 and Nz such that n 3 N1 implies 

Hence, if we set N =  max { N I ,  N2}, then, for all n 2 N ,  

That is, {x,} - {z,}. Thus - is transitive. This proves the assertion. 
Part (b).  For any two Cauchy sequences {x,} and {y,} in ( X ,  d ) ,  lim 

d ( x n ,  y,) exists. 
Let {s,} denote the sequence of real numbers {d(x, ,  y,)} and let E > 0 

be given. Since {x,} and {y,} are Cauchy sequences, we can find integers 
N1 and N2 such that d(y,f, y m f )  < E / Z  for all n’, m’ 2 N1 and d(x,f ,  x m f )  < E / Z  
for all n’, m’ 3 N2. Hence if we choose N =  max { N I ,  Nz}, then, for all n, 
m a N ,  

n-+ m 

where the next-to-last inequality follows from equation (6-4). We have thus 
shown that {h} is a Cauchy sequence (of real numbers). Now corollary 1 of 

355-525 0-70-12 
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Theorem 9.7 shows that the Euclidean space R1 is complete. Hence, 
lim Sn=lim d ( x n ,  y n )  exists. 

Part (c). If  {xn)  and {yn )  are two Cauchy sequences in (X, d )  a n d $  
{x;) and { y k )  are any  two Cauchy sequences such that {xk) - {xn)  and 
{yk}- {yn},  then n-+ lim m d ( x n ,  yn)  =lim n+ m d(xA, ~ k ) .  

Given E > 0, it follows from the definition of - that we can find integers 
N1 and N z  such that n B  N1 implies d(xn ,  x;) < 4 4  and n 3 N z  implies 
d ( y n ,  y ; )  < ~ / 4 .  Let r=lim d ( x n ,  yn) and r’=lim d(xA,  yA)(which exist by 
part (b)). Then we can find integers ~~ _.. N3 and N4 such that, for n b N3,  

n+ m n+ m 

n+m n+m 

and, for n 3 N4, 

Since E was arbitrary, we conclude that r=  r ’ .  
Let X* be the quotient set of the set S of all Cauchy sequences in (X, d )  

by- (i.e., the collection of all equivalence classes of -). We denote the 
elements of X *  by x*, y* ,  etc. Each element x* ofX* is a collection of Cauchy 
sequences which are equivalent to each other- that is, they satisfy equation 
(9-1). If we choose a Cauchy sequence {x,} from x* and a Cauchy sequence 
{ Y n }  from y* ,  then part (b) shows that lim rl-- d ( x a ,  y,) exists and part (c) shows 
that this limit is independent of which Cauchy sequence from x* and which 
Cauchy sequence from y* we use to calculate it. That is, the number lim 
d ( x n ,  y,) depends only on the sets x* and y* from which the Cauchy sequences 
were taken and is independent of the particular Cauchy sequences used to 

n- rn 
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calculate it. Hence, for any two points x* and y* of X*, let us define d*(x*, y*) by 

d"(x*, y*)= \iJe d ( x n ,  3%) (9-2) 

where (x,} is any Cauchy sequence in x* and {y,} is any Cauchy sequence 
in y*. 

Part (d).  Equation (9-2) defines a metric on X*.  
We must show that d" satisfies axioms (a) to (e) of Definition 6.1. 
It is clear that d*(x*, y*) b 0 since a sequence, all of whose terms are 

nonnegative, can certainly not converge to a negative number. We must also 
show that equality prevails if and only if x*=y*. To this end suppose 
d*(x*, y*) =O.  This means that lim d ( x n ,  y,) = O  for Cauchy sequences 
{x,) E x" and {y,) E y*. Hence {x,} - {y,}. Since - is an equivalence 
relation by part (a), x" is the equivalence class of {x,} by -, and y* is the 
equivalence class of {y,} by -, Theorem 9.14 shows that x*= y*. It is clear that 
the steps of this argument can be reversed to show that x*=y*  implies 
d*(x", y*)= 0. 

The symmetry of d" is clear because d(xn ,  y,) =d(y,, x,) for all n. 
Finally we must show that the triangle inequality is satisfied. For this 

purpose, let x*, y*, z* E X "  and suppose that {x,}, {m}, and {z,} are, re- 
spectively, members of these equivalence classes. Since d is a distance func- 
tion on X ,  it is certainly true that 

n-- 

Since this holds for every n, it must also be true in the limit; that is, 

d"(x*, 2 " )  =lii d ( x n ,  2,) == $2 [ d ( x n ,  Y n )  + d ( y n ,  zn) l  
=lim n+m d(x , ,  y,) +lim n-m d(y , ,  2,) =d*(x*, y") +d"(y*, 2") 

(see Theorem 7.7(a)). We have now shown that ( X " ,  d" )  is a metric space. 
For each x E X the constant sequence x, x, x, . . . is certainly a Cauchy 

sequence. Theorem 9.15 shows that there is one and only one equivalence class 
inX" which contains x, x, x, . . . . We shall use the notationx+, yf, etc., for the 
points of X *  which, respectively, contain the Cauchy sequences x, x, x, . . .; 
y, y, y, . . .; etc. Let Xo be the subset of X *  which consists of all those equiva- 
lence classes which contain Cauchy sequences of this type. Since, for each 
x E X ,  there is one and only one equivalence class x+ which contains the 
Cauchy sequence x, x, x, . . ., the scheme which associates with x the 
equivalence class x+ certainly defines a function from X to X".  We call this 
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function f. Thus, 
f : X - X *  
f (x) = xi for every x E X 

and by construction 

That is, f is ontoX0. 
xo =f ( X )  

(9-3) 

Part ( e ) .  The function f is an  isometry from X toXo (i.e.,Xo is the isometric 

If the Cauchy sequences {x,} =x, x, x, . . . and { yn} = y ,  y ,  . . . are 
image of X under f). 

both elements of xi, then {x,} - { y n }  so that 
\ 

lim d ( x n ,  y,) = d ( x ,  y )  = O  
n + m  

Hence x= y. This shows that there cannot be two different Cauchy sequences 
of this type in the same equivalence class. Thus f is one-to-one, and f is cer- 
tainly onto. We need only verify that f preserves distance to prove that it is an 
isometry. 
But, if we compute the distance between any two points of X O ,  say x+ and 
y + ,  we find 

d*(x+,  Y'> = 4 x 7  Y )  

Part (f>. X o  is dense in X*.  
We must show that the closure x o  of X o  is all of X * .  To this end let x* be 

any point of X *  and choose a Cauchy sequence {x,} E x*. Given E > 0, there 
exists an N such that m 3 N implies ~ ( x N ,  x,) < 4 2 .  Since 

{Xn} E x* 
X N y  X N ,  . . . E xs it follows that 

d*(x* ,  XJ) =: lim d(xm,  xN) d 4 2  < E 
m + m  

Now in view of the fact that xN+ E Xo we have shown that every ball about 

Part (g). I f  {xi} is any  Cauchy sequence of elements of X o ,  then {xi} con- 

It follows from the construction that, for each n= 1, 2 ,  . . . , the constant 

x* contains a point of X o  and, hence, we have shown that x o = X * .  

verges to a point x* E X*. 

sequence xn, xn, . . . is an element ofx$ and that 
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for n = 1 , 2 ,  3, . . . x,= f-'(x,+) 

Hence the inverse image of the range of the sequence {xi} under the 
isometry f is the range of the sequence { x,} in X. (This is sometimes called the 
isometric preimage of the range of {x,'}). 

Since {xi} is a Cauchy sequence in X", it follows that, given E > O ,  
we can find an integer N such that m, n 3 N implies 

But since 

and since f is an isometry, we conclude that 

d(xrn, xn) = d*(x7t, x,+) < E 

for rn, n > N .  Thus {x,} (with x ,=f - l (x i )  for n = 1 ,  2,  3, . . .) is a Cauchy 
sequence in X and, therefore, belongs to one of the equivalence classes, 
say x* E X". We shall show that the sequence {xi} converges to x*. Evidently 

d"(xf, x*) = Lirr d(x,, x,) 

Hence, 
lim n-= d"(x,+, x*)=ki~ l i i  d(x,, x,) 

Since {x,} is a Cauchy sequence, it follows that lim n-+m lim m'cc d(x,, x,) =O.  
Thus x+, + x", which is the desired result. 

Part (h). The metric space X "  is complete. 
To show that X* is complete, we must demonstrate that any Cauchy 

Hence let {x:} be an arbitrary Cauchy sequence in X". Since Xo is 
sequence of points in X" converges to a point in X*. 

dense i n X " , f o r e a c h n = l , 2 , 3 , .  . . ,wecanf indanx$EXosuchtha t  

d"(xz,x,+) < l /n  

Thus we have constructed a sequence {x:} of points in XO. Now let E > 0 
be given. We can find an N such that m,  n 2 N  implies d"(x:, xz) < €13. 
Hence, for m,  n 2 max { 3 / ~ ,  N }  , 

1 75 



ABSTRACT ANALYSIS 

d*(x,+, xk) d d*(x,+, xf)  + d * ( x f ,  xg) + d * ( x g ,  x&) < l / n + ~ / 3 + l / r n  d E 

so that {xf} is a Cauchy sequence. Now, as shown in part (g), {xf} must 
converge to some y* E X*.  We now claim that {.E} must also converge to y*. 
To prove this, we note that, given E > 0, we-can find an N' such that n 9 N' 
implies 

d * ( x f ,  y*) < E / Z  

Let N *  be the smallest integer which is larger than both N' and Z / E .  Then, 

d * ( y * ,  x,*) d d*(y* ,  xi) +d*(x,+,  x f )  < E / Z +  l / n  d E 

for n > N * .  That is, 
xf-+ y* 

We have now established that ( X * ,  d * )  is a completion of ( X ,  d ) .  Suppose 
(X** ,  d**)  is another completion of ( X ,  d ) .  There is a dense subset X," ofX* 
which is isometric to X and a dense subset X,"* of X** which is isometric 
to X.32 Since, just as in the case of one-to-one correspondence, isometry is 
an equivalence relation, we see that X," must be isometric to X,"*. So let h be 
an isometry from X $  to X$*. Clearly the image of the range of any sequence 
{xt} in X $  under the isometry h is the range of a sequence { x f * }  in X**. 

Part (i). Let { x f }  be any  sequence in X z .  If there is a point x* E X *  
such that xZ-x*, then the sequence {xz*} in X,"* defined by x f * = h ( x : )  
( n  = 1,  2, 3 ,  . . .) converges to a point x ** E X **. 

Theorem 9.5 shows that the sequence { x f }  must be a Cauchy sequence. 
Since h is an isometry, we see that, for any integers m and n, 

d * ( x f ,  xz) =d**(x:*, xg*) 

which shows that {xz*} must also be a Cauchy sequence. SinceX** is com- 
plete, this sequence must have a limit x** E X**. 

Part ( j ) .  Let {xz} and {y Z }  be sequences in X $  and suppose there is a point 
x* E X *  such that xt-+ x* and yt-+ x*. If the sequences {xf*} and ( y t * }  
in X$* are defined by 

32 The setXo is now denoted by X5. The notation has been changed to distinguish between the sets X5 andX*o*. 
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n = l ,  2 ,  3, . . .. I xZ*= h(xZ)  

Y$* = h (Y$ 1 
and if  x:*+ x** and yf*+ y**, then x**= y**. 

Since h is an isometry, it follows that, for any integers m and n, 

which shows, when combined with the triangle inequality, that 

,**(,**, y**) d d**(x**, xZ*) +d**(xf*, yZ*) +d**(y$*, y**) 
= d**(x**, xf*)  + d**(yZ*, y**) + d*(xf,  yZ) 
d d**(x**, xf*) +d**(yZ*, y**) +d*(xf ,  x*) +d*(x* ,  y$) 

Since x:* + x**, ym + y**, x,* + x*, and y; + x*, we conclude that 

Since X$ is dense inX*, every point x* ofX* must be an adherence point of 
X$. Therefore, Theorem 7.4 shows that there must be at least one sequence of 
points inX$, say {xf }, which converges to x*. Part (i) shows that the sequence 
{x:*} in Xg* defined by x:*=h(xz) (n= 1, 2 ,  3, . . .) converges to a point 
x** E X**. Thus, with each point x* E X * ,  we can associate a point x** EX**. 
Part (j) shows that, if any other sequence in X$ that converges to z* was used 
in this construction, it would still lead to the same point x**. In this way then, 
we associate with each point x* E X* a unique point x** E X**. This scheme 
defines a function @:X* + X**. 

d**(x**, y**)=O; that is, x**= y-** 

Part (k). The function @ is an isometry. 
The mapping is certainly injective, for suppose y**=@(y*), x**= CD ( x* >, 

x,*+x* and yZ+y*, and set x$*=h(x:) andyz*=h(yz) ( n = l ,  2, . . .). 
Then, 

and %*%- --y ** . et {x;} and {y;} *be Cauchy sequences in X$ such that 

d*(x*,  y*) d d*(x*, xZ) +d*(xZ,  y:) + d*(y*,, y*) = d * ( X * ,  xn*) 
+d*(yZ,  y*) +d**(xE*, y*n*) d d*(x*,  xt) 
+d*(y$ ,  y*) +d**(x$*, x**) + d**(x**, y$*) 

Since x,* + x * and yZ + y* and since these imply x,* * + x* * and y$* + x* *, 
we conclude d*(x*,  y*) =O;  that is x*=y*. 

In order to show that CD is surjective,letx** be any point ofX**. SinceX$*is 
dense inX**, there is a Cauchy sequence of points ofX$*, say {x$*}, such that 
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x?*-+ x**. Since h-I must be an isometry (because h is), the sequence (xz} 
defined by x?= h - ' ( x $ * )  (n= 1 , 2 , 3 ,  . . .) is also a Cauchy sequence and so 
converges to a point x* E X *  (because X *  is complete). Since x?*= h(x,T) 
( n = 1 ,  2 ,  3 ,  . . .), we see from this thatx**=CD(x*). 

In order to show that CD is an isometry, it only remains to show that distances 
are preserved under this map. To this end let x* and y* be any elements of 
X *  and let x**=CD(x*)  and y**=CD(y*) be their images under CD. Choose 
sequences {x$} and (y?} in X $  such that x?+ x* and y,T+ y* so that, inX**, 

11 where {yz*} and {x:*} are defined by and x**+ x** yz*+ Y** 

Now let E > 0 be given and chooseN1, . . ., N4 such that d * ( x * , x ; )  < ~ / 2  
for n 2 N 1 ,  d * ( y * ,  y?) < 4 2  for n 3 N 2 ,  d**(x** ,  x?*) < 4 2  for n >N:% and 
d**(y**, y,T*) < E/:! for n s N4.  Setting N =  max { N I ,  . . ., N 4 } ,  we find, €or 
n > N ,  

d*(x*,  y * ) s  d * ( x * ,  x?)+d*(xf, y?)+d*(y?, r*) < d*(x?, Y?)+E 
d*(x?, y?) d d*(mT, x * ) + d * ( x * ,  Y * ) + d * ( Y * ,  y2) < d*(x*,  Y * ) + E  

Similarly 

,**(x**, y**) < d**(x;*, y;*> + E 

d**(x?*;  y?*) < d * * ( x * * ,  y**) + E  

So we conclude that 

But since x$* and y?* are the isometric images o f x ?  and y?, respectively, 
we see that d**(x:*, y:*) =d*(x:,  yz). Therefore 

Id*(%*, y*) -d**(x**, y**) I < 2 E  

Since E was arbitrary, this means that 
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d * ( x * ,  y * )  =d**(x**,  y**) 

which completes the proof. 

Many applied problems in mathematics reduce to finding a solution to 
an equation of the form 

f (4  = x  (9-4) 

where f is a function whose domain is some metric space ( X ,  d )  and f : X +  X .  
If X is R' (or some subset of R*), equation (9-4) may be an algebraic equation. 
However, the metric space X can be much more general than this. For example, 
it may be a function space. In this case equation (9-4) could represent an 
integral or differential equation. 

If X is a complete metric space, it is frequently possible, with certain 
restrictions on the function f, to construct a convergent iterative procedure for 
calculating the solution to equation (9-4) which at the same time yields a 
proof of the existence and uniqueness of the solution. The theorems which 
yield general iterative procedures of this type are known as algebraic fixed 
point theorems. Before introducing some of these theorems, the following defi- 
nitions are needed. 

Definition 9.17: Let E be a subset o f a  metric space ( X ,  d ) .  A function 
f : E + X  is said to satisfy a Lipsehitz condition with modulus a if there 
exists a positive number a such that for  every p ,  q E E 

If, in addition, a < 1, the function f is said to be a contraction mapping 
of E into X with modulus a. 

Definition 9.18: Let f : X + X .  If E is a subset of X such that 

f(x) E E for all x E  E 

then E is said to be an invariant subset o f f .  If, in addition, X is a metric 
space, then E is called a n  invariant subspace o f f .  

Suppose f : X + X andE is an invariant subset off. Let h be the restriction 
off to E .  Then the range of h is a subset of E. Hence h can be considered as a 
function from E into E. 
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The following theorem, due to Banach, is the most well kn3wn of all the 
algebraic fixed point theorems. It is sometimes called the Principle of Con- 
traction Mapping. Many of the other algebraic fixed point theorems are attempts 
to weaken the hypothesis of Banach's theorem. 

Theorem 9.19: Let f be a contraction mapping of the complete metric 
space ( X ,  d )  into itself. Then there is a uniaue point p E X such that f ( p )  = p 
and, for any  point xo E X ,  the sequence - X O ,  f ( ~ 0 ) ;  f (f ( i o ) ) ,  . . . converges to p .  

Proof: Choose any point XO E X and define a sequence {xn} recursively by 

xn+l=f(xn) n=0, 1, 2, 3 , .  . . (9-5) 

Since f is a contraction mapping, there exists a positive number a < 1 such 
that, for every p ,  q E X ,  

Therefore, for every positive integer n, 

In particular, 

d ( X 2 ,  X l )  d ad(% XO) 

Suppose that for n 3 1, 

Then equation (9-7) shows that 

Hence, by induction, we conclude that equation (9-8) must be true for 
every n. 

By successively applying the triangle inequality, we find that, for k > n,  

Upon substituting equation (9-8) into this expression, we see that 
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(9-9) 

Since {-a'(} converges (recall that a < 1) and since every convergent sequence 
is a Cauchy sequence, equation (9-9) shows that {x,(} is also a Cauchy sequence. 
But X is a complete metric space. Hence there exists a point p € X  such that 

(9-10) 

Since this implies that given E > 0 there exists a positive integer N such that 

d ( x k , p )  < E  f o r k a N  

it follows from equation (6-4) that 

whenever k N .  That is, 

lim d ( x k ,  x,)=d(p, x,) 
L - x  

Hence taking the limit as k + ~0 in equation (9-9) yields (since p m  +cc ak= 0) 

(9-1 1) 

Upon combining this result with equations (9-5) and (9-6) we find that 

And since lim - a t l = O ,  this implies that lim x n = f ( p ) .  Thus it follows from 

equation (9-10) that 
n+m n - r  

f ( P ) = P  

This proves the existence of the point p and gives a constructive procedure 
for finding it. 

It remains to show that this point is unique. To this end supposef(p)=p 
and f(q) = q. Then equation (9-6) shows that 
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Since 0 < -a < 1,  this shows that d(p, q)=O; that is, p=q.  
Notice that equation (9-11) gives us a means for determining an upper 

bound for the error after n steps of the iteration process described in this theo- 
rem have been carried out. The point x in equation (9-4) is referred to as a 
fixed point off. 

The hypothesis of the theorem requires that the range of the contraction 
mapping f be a subset of its domain. It frequently occurs in practice that one is 
interested in obtaining solutions to equations of the form given in equation 
(9-4) when this condition cannot be met. The following corollary gives condi- 
tions under which these restrictions on the contraction mapping can be 
weakened. 

Corollary 1: Let ( E ,  d )  be a complete subspace of the metric space ( X ,  d )  
and let f be a contraction mapping of E into X with modulus CY. If there exists 
an  x* E E such that the set S ( x * )  dejined by33 

-a S ( X  )- x E X l d ( x ,  xO) d- d(xo, x*)} with xo= f(x*) * - {  1--a 

is a subset of E ,  then there is a unique point p E E such that f ( p ) = p  and the 
sequence xo, f ( x o ) ,  f(f(xo)), . . . converges to p .  In addition, p must belong 

Proof: Suppose there is an x* E E such that S(x*) C E and let x be any point 
of S (x*). Then x E E. Since f is a contraction mapping of E with modulus CY, 

it follows that 

Hence 

to S(x*). 

d ( f ( x )  9 f (.*I> d -ad(x, x*) 

:':'The set S ( x * )  is the closed ball of radius (&) d ( x , .  x * )  about x0. 
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This shows that x E S(x*) implies f (x) E S ( x * ) .  Thus S ( x * )  is an invar- 
iant subspace off. Let h be the restriction off to .h. According to the remarks 
following Definition 9.18, h can be considered as a function from the subset 
S ( x * )  into itself. Sincefis a contraction mapping ofE intoX, it follows that h is 
a contraction mapping of the subspace ( S ( x * )  , d )  into itself. Clearly S(x*)  is 
a closed34 subset of the complete metric space ( E ,  d ) .  Hence Theorem 9.9 
shows that (S(x*)  , d )  is a complete metric space. Since xo E S(x* )  , Banach's 
theorem now shows that there is a unique point p E S(x*)  such that 
f ( p )  = h ( p )  = p and that the sequence xo, f (xo) , f (f (xo) ) , . . . converges top. 
On the other hand p is also the only point of E such that f ( p )  = p .  For if q was 
another such point, it follows from the fact that f is a contraction mapping with 
constant a that 

d ( P ,  4)  ad(P '  q )  

which shows, since 0 < a < 1, that p= q. 

Let X be any set and let f .: X +  X .  For each positive integer n we define 
inductively a function 6") :X+ X as follows: Put fl)= f and for each positive 
integer n put f f + l ) = f o f f ) .  It is easy to prove by induction that for any two 
positive integers m and n 

Banach's fixed point theorem now tells us that i f f  is a contraction 
mapping of a complete metric space (X, d )  into itself then, for every xo E X, 
lim f")(xo) = p  where p is the unique fixed point off.  

It may turn out that a continuous function f is not a contraction mapping 
but for some integer m the functionf?") is. The next corollary shows that in 
this case the conclusions of Banach's theorem still hold. 

n-? m 

Corollary 2: Let ( X ,  d )  be a complete metric space and let f be a con- 
tinuous function from X into itself. If, f o r  some positive integer m, the function 
fin) is a contraction mapping, then there exists a point p E X such that f ( p )  = p  
and for  any  xo E X the sequence {f")(xo)} converges to p.  
Proof: Set g=f7'l). Banach's theorem shows that there is a unique point 

34 See example following Theorem 6.13. 
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p E X such that g(p) =p. Hence f(g(p)) =f(p). But 

f ( g ( p ) )  =fCP"'(p)) =f"JTm)(P) =P"'"(P> 'P")Of(P) 'JT")OC(P)) 

Hence g(f(p)) =f(p). This shows that f(p) is also a fixed point of g. Since 
the fixed point is unique, we conclude that f(p) =p. It also follows from 
Banach's theorem that the sequence {g(")(xO)} converges to p for every xo E X .  
However, 

g(n)(xo) =P""'(xo) 

And, since f is continuous, Theorem 8.5 shows that 

Hence the sequence {f("z~t+l)(xo)} converges to p. Continuing in this manner 
we can show that for any j < m the sequence {f("'"+j)(xO)} converges to p. 
But the theorem of factorization of integers shows that every positive integer i 
can be written in the form 

i = m n + j  w i t h O < j < m  

Hence we conclude that the sequence {f(i)(xo)} converges to p. 

We shall first give a very simple example to illustrate how Banach's 
theorem can be applied. Suppose f is a real valued function defined on the 
closed interval [ O ,  13 and suppose that f satisfies the Lipschitz condition with 
modulus K 

If 0 < K < 1 and the values off lie in [0, 11, then f is a contraction mapping 
of the metric space [0, 11 (with the usual metric) into itself. Since (Theo- 
rem 9.9) closed subspaces of complete metric spaces are complete, the require- 
ments of Theorem 9.19 are met. Hence, for any xo E [ O ,  11, the sequence 
{x,} defined by 

xn+1 = f ( x n )  (9-13) 

converges to the unique number x* which is a solution of the equation 

Figure 9-1 illustrates how the successive approximations given by equation 
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FIGURE 9-1. - Convergence of contraction mapping iteration procedure. 

(9-13) converge to the fixed point x* for the case wheref has a positive slope. 
Now, for each a E [0, 11, consider the functionf, : [0, 114 R 1  defined by 

f,(x) = x + Q ( a - x 2 )  for all x E [O, 11 (9-14) 

For any real number x, 

i+Q (a-x2) =Q (a+ 1 - x 2 + 2 x -  1) =Q [ ( a +  1) - (1 - x ) q  
Hence 

O ~ Q a < f , ( x )  ~ $ ( a + l )  ~1 f o r a l l a , x E [ O , 1 ]  

Therefore fa is a mapping of the complete space [0, 13 into itself. Since 

Ifu(x)-fu(Y)I=QI(1-Y)2- (1--x)2(=4 Ix-rl12- ( X + Y ) I  

it is easy to see that there is no positive number a < 1 such that 
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However, let us consider the function 6 2 ) .  Clearly, for any x E [0, 11, 

fA2)(x) = f a c f u ( x ) )  =+ { ( a +  1 )  - [ I  -$ ( a +  1 )  +$ ( 1  -x)2]2} 

=$ ( a + l )  -Q [1 -a+ ( l - ~ ) ~ ] ~  

Hence for any x, y E [0,  11 

Thus fi) is a contraction mapping of the complete metric space [0, 11 into 
itself with constant ( Z - a ) / Z  for 0 < a d 1. 

Corollary 2 of the theorem now tells us that for each a E (0, 11 there is a 
point p ( a )  E [0, 11 such that 

and that the sequence { p , ( a ) }  which is defined recursively by 

(9-15) 

converges to p ( a )  . 
Evidently [ P ( a ) I 2 = a .  That is, p ( a )  =& We have therefore shown that 

{ p n ( a ) }  converges to & for 0 < a d 1. However it is easy to see from equation 
(9-15) that p,(O) = 0 for every n. Since G= 0,  we conclude that the sequence 
{ p , ( a ) }  defined recursively by equation (9-15) converges to &for  0 d a S 1. 
In  addition p n  ( 0 )  = 0 for every n. 

The following is another relatively simple application of Theorem 9.19. 
Consider the set of k linear algebraic equations 
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k 

bi=C, aijxj 
j= 1 

i = l ,  2, . . ., k (9-16) 

for the k unknowns X I ,  . . ., xk. This system of equations can be transformed 
into the system 

k 
X i = x  Cijxj+bi i = l ,  2, . . ., k (9-17) 

j= 1 

by setting Cij= &j - aij where 6ij is the Kronecker delta defined by 

Let f= (fl, . . ., fk) be the function from R k  into R k  defined by 

Ii 

fi(y) =C, CUM+ bj i =  1, 2, . . ., k for all y= (yl, . . ., yk) E Rk 
j= 1 

Then finding the solution to the system of equations (9-17) is equivalent to 
finding a vector x E R k  such that 

x = f ( x >  (9-18) 

that is, finding a fixed point off. Since the Euclidean space Rk is complete, 
Theorem 9.19 gives a convergent iterative procedure for calculating the 
fixed point of equation (9-18) or, equivalently, the solution of the equation 
(9-17) whenever f is a contraction mapping. We shall now obtain a sufficient 
condition for f to be a contraction mapping. To this end notice that for any 
two points p =  ( p l ,  . . ., p k )  and q= (41, . . ., q k )  of R” 
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Since any set of k real numbers are the components of a vector in R k ,  
it follows from Theorem 3.6(d) after using the definitions of norm and scalar 
product in the Euclidean space R k  that for any real numbers dl ,  . . . , dk and 
e t , .  . . , l e k  

Hence for each i = l ,  . . ., k 

where we have puta2= 2 2 C$. We may now conclude that f is a contrac- 
i = l j = 1  

tion mapping whenever 

A less trivial application of Banach's theorem is given in chapter 11. 
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Infinite Series 
We have already indicated (see introductions to chapters 1 and 7) that 

perhaps the two most important events in the development of modern analysis 
(discovery of sets and definition of convergence) occurred as a result of the 
study of trigonometric series. Aside from their role in the development of 
mathematics, infinite series are also important in their own right. 

The classical theory of convergence of infinite series as presented in ele- 
mentary texts is due to Cauchy and Abel. With the advent of a consistent theory 
of the real number system, their work passed into the standard expositions of 
analysis practically unchanged. Upon recognizing the importance of conver- 
gence, the mathematicians of the nineteenth century proceeded to develop 
numerous convergence tests. 

In the eighteenth century, mathematicians freely rearranged terms of 
infinite series until, in 1833, Cauchy gave an example of a conditionally con- 
vergent series which, upon rearrangement, converged to a different sum. In 
1837, Dirichlet proved that every rearrangement of an absolutely convergent 
series converges to the same sum. 

Since infinite series involve both the concept of addition and the concept 
of convergence, the natural setting for discussing this topic is the normed 
linear space, or the Banach space if the completeness property is needed 
for existence statements. We therefore begin by defining an infinite series in 
a normed linear space. 

If {Un} is any sequence in a normed linear space, we can, of course, for 
any integers p and q with p < q ,  form the sum vp+ vp+l + . . . + vq. The 
familiar notation 

is used for this sum. 

2 V n  
n=p 
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Definition 10.1: Let ( V n )  be any sequence in a normed linear space V. 
The sequence {sn} whose nth term is defined by 

is called an infinite series in V. The symbol 

(10-1) 

is used for {Sn}. The nth term of {SA} is called the nth partial sum of the infinite 
series. If, in addition, the sequence ( S n )  converges, its limit s is called the sum 
of the infinite series and we write 

As indicated in the comments following Definition 4.15, the sequence 
( i n >  may be defined as a function from the set of nonnegative integers (instead 
of the set J of positive integers) into V. I n  this case the notation, 

2 vn 
n=o 

is used instead of notation (10-1) and, sometimes, when the distinction is 
immaterial, we simply write 

Occasionally we use the symbolic notation 

Vl+V2+V3+. . . 
in place of notation (10-1). 

It is important to point out that, when a n  injinite series converges, its sum 
is not obtained by simple addition but is, in fac t ,  the limit of a sequence of sums. 

We remind the reader that the Euclidean spaces R" are normed linear 
spaces. In fact, according to corollary 1 to Theorem 9.7 they are Banach spaces. 
Thus, in particular, any general results about infinite series in normed linear 
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spaces can be applied to sequences of real or complex numbers (with the norm 
taken to be the absolute value). 

Although it is true that most theorems about sequences can be restated 
as theorems about infinite series and vice versa, it is still helpful to consider 
both concepts. For example, we may restate Theorem 9.5 as follows: 

Theorem 10.2: If v n  is a convergent infinite series in a normed linear 
space, then, for every E > 0,  there is a n  integer N such that 

whenever m 3 n b N .  

Thus we have the following theorem. 
So, in particular, if we put m= n,  this implies IIvnII < E whenever n 2 N .  

Theorem 10.3: I f  vUn is a convergent infinite series in a normed linear 
space, then 

lim vn=O 
n-+ m 

We must point out, however, that the condition vn+ 0 is not a suficient 
condition for  the convergence of I= vn. For example, it will be seen that the real 

series l ln diverges. 
W 

a= 1 
However, in a Banach space condition (10-3) is equivalent to convergence. 

Thus, we have the next theorem. 

Theorem 10.4: A series b n  in a Banach space converges if and only if, 
for  every E > 0 ,  there is an integer N such that m b n b N implies 
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Theorem 7.11 about monotone sequences also has a counterpart for series 
with real terms. 

Theorem 10.5 : A n  infinite series with (real) nonnegative terms converges 
i f  and only if its sequence of partial sums is bounded above. 

When Theorem 7.7 and the first corollary to Theorem 7.9 are translated 
into the language of infinite series, we arrive at the following theorem. 

Theorem 10.6: (a) I f  x z n  is an  infinite series of complex numbers, then 
%% zn and C, N- Zn converge and, when Zn converges i f  and only if both 

these series converge, it must be true that 

(b) I f  U n  and Vn are convergent infinite series in a normed linear space 
with sums u and v,  respectively, and i f  a and /3 are complex numbers, then 

(sun -k Pun) is convergent and has the sum au i- pv. 

The value of Theorems 10.4 and 10.5 is that they allow us to establish the 
convergence of an infinite series without a knowledge of its sum. The next 
theorem (called the comparison test) gives us another way of doing this. 

Theorem 10.7: (a) Let (bn) be a sequence in a Banach space and sup- 
pose that for  some integer No, llbnlld cn whenever n > No and that the real infi- 
nite series with nonnegative terms cn converges. Then bn converges. 

(b) Let (an> be a sequence of nonnegative numbers and suppose that there 
exists a sequence i d n )  o f  nonnegative numbers such that, for  all n L No, an 2 d, 
and that the infinite series C, d, diverges. Then 
Proof: Part (a). Let E BO. It follows from Theorem 10.4 that there exists an 
integer N 3 No such that m L n 2 N implies 

an diverges. 

k= n 

So we see from the triangle inequality that 
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(10-4) 

and part (a) follows from Theorem 10.4. 

Part (b). This is a direct consequence of part (a) for, if a, converges, 
then so must C, d n .  

Theorem 10.7 is frequently used to establish the convergence of a 
given infinite series. It is clear, however, that this cannot be done unless we 
know something about the convergence of a certain number of infinite series 

xn.  The convergence 

of this series can be established by considering its partial sums. It is easy to 
see that, if x # 1, then 

whose terms are nonnegative numbers. 
W 

First let us consider the so-called geometric series 
n=O 

(10-5) 

Hence, upon taking the limit, we immediately establish that, for 0 d x < 1, 

(10-6) 

W 

and that, if x > 1, C, x n  diverges. For x= 1 we see that 
n=O 

Z x n = l + l + .  . . 
n=O 

which certainly diverges. 
There is a result due to Cauchy which allows us to establish the conver- 

gence of many real infinite series with monotonically decreasing terms by 
examining certain rather “small” subsequences. In fact, if { a n }  is a mon- 
otonically decreasing sequence of nonnegative numbers, the infinite series 

9 a n  converges if and only if the infinite series 
n= 1 {= 0 

m 

Z k a ( , k )  does. 

To obtain this result, it is sufficient to show, in view of Theorem 10.5, that 
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the sequence of partial sums 

quence of partial sums 

sum of 

m 

2"a(,$ is bounded above whenever the se- 

an is and vice versa. Hence, let S n  be the nth partial 
W k=O 

m W 

an and t k  be "t: kth partial sum of 2ku(2k). Then, 
n= 1 k=O 

and 
sn=al+az+.  . .+a, 

tk=al+2az+4a4+. . .+2"a2k 

Clearly, for n < Zk, 

s n s a l + ( a z + a s ) + .  . .+(a,k+. . . + a 2 k + ~ - l ) ~ u 1 + Z u 2 + .  . .+2"a2k=tk 

Thus, sn d tk whenever n < 2k. Hence, if there is a finite number M such that, 
for every k, t k  < M,,then certainlys, S M .  Thus if { t k }  is bounded above, { Sn} 

is also. Conversely, if n > 2 k ,  it is clear that 

sn>a1+a2+ (a3+a4)+ . . . + ( ~ ~ k - 1 - ~ +  . . . +a,k) 
1 1 >-al+a2+2a4+ . . . +2k-1a2k=-ttk 2 2 

Therefore, 2s, 2 t k  whenever n > 2k. If there is a finite number M which is an 
upper bound of { S n } ,  then clearly 2M must be an upper bound of { t k }  and this 

l / n P  where p is any number. Clearly, 

0, Theorem 10.3 shows this series cannot possibly converge. On the 

establishes the result. 00 

We can apply this to the series 
n= 1 

if p 
other hand, if p > 0, Cauchy's result is applicable. We see that 

but this is just a geometric series and so we know that it converges if and 
only if 1 - p  < 0. Thus we have established that l/nP converges if and 

There is perhaps an even more important result contained in the proof of 

' X  

only if p > 1. n=l 
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Theorem 10.7 than that given in the statement. For even if it has been estab- 
lished that a given series of numbers converges, it may converge so slowly that 
it is useless for computational purposes. Thus it is important to be able to 
decide how closely the “first n terms of a series” approximates its sum if this 

X 

series is to be used for computation. Hence, if 2 a n  is a series of numbers 

and s is its sum, we would like to know an upper bound to the number 
n= 1 

for various values of n. Such estimates can be obtained by using the inequality 
(10-4) in the proof of Theorem 10.7. Suppose s is the sum of the series 2 b, in 
Theorem 10.7. 

Since, for m > n,  

and since by the definition of convergence, 

I n  

lim s - x  bk = O  /I k = l  II m+m 

we see, by taking the limit as m+ 03 in equations (10-4) and (10-7), that 

X X 

where the notation c k  is interpreted to mean 
k = n + l  k =  1 

In particular, if a n  is a series of real numbers 
lakl < ck for all k greater than a fixed integer No, then 

when n+ 1 3  No. 

n 
Ck- Ck. 

k = l  

whose sum is s, and if 

For example, suppose we wish to determine what the error will be in evaluat- 
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ing the series by keeping only the first n terms. Then in equation (10-8) 

Then ak 9 ck for k 2 n f  1. There- 
1 

(n+ 1) !3k* and set ch.= 1 
we take ah.=- (k !3k) 
fore, the error will be less than 

or, using equations (10-5) and (10-6), we see that the error introduced by keep- 
ing only n terms will be less than 

1 
2(n+ 1) !3“ 

We now turn to yet another method of establishing the convergence or 
divergence of a given infinite series called the “root test.” This result was first 
discovered by Cauchy in 1821. It was lost for a while in the prodigious jungle 
of his work and rediscovered by Hadamard in 1892. 

Theorem 10.8: Let bn be an  infinite series in a Banach space. Set 

P = lim SUP (Ilbnll>I’’ 
n - ) s  

Then 
(a) If p < 1, x b n  converges. 

(b) If p > 1, bn diverges. 

Proof: Suppose p < 1 and choose a so that p < a < 1. Theorem 7.23(b) shows 
that we can find an integer N such that n B N implies 

Hence, 

Since the series E a ”  converges for a < 1, Theorem 10.7(a) shows that x b n  
also converges. 

Now suppose that p > 1. Theorem 7.23(aj shows that Ilbnlll’” > 1 for infi- 
nitely many n and so llbnll> 1 for infinitely many n. We therefore conclude 
that for some E > 0 there is no integer N such that n a N implies llbnll< E. 
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Thus, {bn} does not converge to zero and Theorem 10.3 shows that 
not converge. 

It is easy to see by an example that, in general, nothing can be said about 
l / n  and the infinite 

l /n2 ,  but we have already shown that the first of these diverges and 
the case p = 1. Thus, p = 1 for both of the infinite series 
series 
the second converges. 

Definition 10.9: Let vn be an infinite series in a normed linear space. 
1’ the infinite series nverges, then the infinite series z v n  is said to 
converge absolutely. I h  on the other hand, 2 vll converges but ]lvnlJ 
diverges, it is said that 2 vn converges nonabsolutely or is nonabsolutely 
convergent. 

X 

For example, the special logarithmic series (- ’)’’-’ is nonabsolutely 
n convergent. (Its sum is In 2.) n= 1 

Theorem 10.10: I f  2 b, is an absolutely convergent infinite series in a 
Banach space, the& 2 bn converges. 

Proof: This theorem is an immediate consequence of Theorem 10.7(a). 
Clearly there is no difference between convergence and absolute conver- 

gence for numerical series with positive terms. 
We mention that, in addition to the tests for convergence discussed here, 

there are also the ratio test and Raabe’s test which we have not included. An 
important feature that these tests have in common is that they are all tests for 
absolute convergence and do not show whether or not a given series is non- 
absolutely convergent. In practice it is often difficult to establish except in 
certain special cases (such as the alternating series which is not discussed here) 
whether or not a given series is nonabsolutely convergent. Even if it is estab- 
lished that a series is nonabsolutely convergent, the series is still much less 
desirable for many purposes than an absolutely convergent series. The reason 
for this is that absolutely convergent series can be manipulated pretty much as 
finite sums. Thus it is shown in Theorem 10.14 that these series may be re- 
arranged arbitrarily without affecting the sums. We have already shown in 
Theorem 10.6(b) that any two convergent series can be added together term by 
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term. It is also easy to show, although we shall not do so here, that two abso- 
lutely convergent series of complex numbers can be multiplied term by term 
to obtain a series which converges to the product of the sums. We shall see, 
however, at least in the case of series with complex numbers (see remarks 
following Theorem 10.15), that the situation is not nearly as good in the case of 
nonabsolutely convergent series. 

Definition 10.11: Let f: J+ J be a bijection from the set of positive 
integers to itself(note that, according to Definition 4.15, f is a sequence with 
values in J )  and let (v,) be a sequence in a normed linear space. DeJine the 
sequence (v2) by 

m 

Then the infinite series 2 v,* is said to be a rearrangement 

series X u n .  
n =  1 W 

n= 1 

of the infinite 

It is clear that, in general, the partial sums of the se r i e szvz  will be 
different from the partial sums of the infinite series vn. Thus it should not 
be surprising if a rearrangement of a given series does not converge to the 
same sum as the original series does. We shall now establish under what 
conditions we might expect all rearrangements of a given infinite series to con- 
verge and whether or not they converge to the same sum as the original series. 

Definition 10.12: A n  infinite series in a normed linear space converges 
unconditionally if every rearrangement of this series converges to the same 
sum. 

The notation used for infinite series suggests that they behave much as 
finite sums and we have already indicated that, as far as absolutely convergent 
series are concerned, this is pretty much the case. To see that it is not true for 

m ( -1)n-1 
all series, consider the infinite series z . Writing this out we have n n= 1 
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It is well known, although we shall not prove it here, that this series converges. 
If we denote its sum by t ,  an inspection of its terms shows that 

1 1 5  t < I--+-=- 
2 3 6  

On the other hand, we can rearrange the terms of this series in such a 
way that two positive terms are always followed by one negative one and obtain 
the series 

1+---+-+---+-+---+ 1 1 1 1 1 1 1  1 
3 2 5 7 4 9 1 1 6  (10-10) 

Each consecutive grouping of three terms is represented by the formula 

n = l ,  2 ,  3 ,  . . . 1 +--- 1 1 
4n-3  4n-1  2n 

It is clear that 

1 

If we denote the nth partial sum of this series by un, we see from the 
preceding considerations that 

u3<u6<u9< . . . 
and this shows that 

b 
lim sup qn > u3=- 6 

n + m  

Therefore the infinite series (10-9) and (10-10) cannot possibly converge to 
the same sum. It is clear, from the discussion of the series l / n P ,  that the series 

2 (-I)"-' does not converge absolutely: We will see from the next theorem, 
n n= 1 

which was first proved by Riemann, that the type of behavior illustrated here 
is in fact quite general. 

Theorem 10.13: If cn is any  nonabsolutely convergent series of real 
numbers and a d pare any  two extended real numbers, there is a rearrangement 
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C n  whose sequence of partial sums {An} has the property that 

and 
lim inf An = a 

lim sup An=P 
n - + m  

n - + m  

(10-11) 

(10-12) 

Proof: For each positive integer n, let us define the numbers c', and c; by 

c f =  max {cn, 0} 

c;=- min { cn, 0} 

It is clear that C n =  c,' - c;, Icn I = c,' + c; and that c,', c; are nonnegative. 
Theorem 10.6(b) shows that, if both and c; converge, then I;: (cf+c;) = 

must also converge. Since this is contrary to hypothesis, at least one of 

these series must diverge. On the other hand, for every positive integer n, 

n n n n 

k= 1 k= 1 k= 1 k= 1 

and, thus, if only one of the series C n  would 

have to diverge also. Since this is also contrary to the hypothesis, we conclude 
that both I;: c,' and 

Let d;., 4+, dj+, . . . be the nonnegative terms of E cn taken in the order 

in which they occur and let -a!,-, -&, -dj-, . . . be the negative terms of 
I;: cn taken in the order in which they occur in the series. It is clear that the only 

difference between the series I;: d+, and I;: c', and between the series 

E q are terms which are zeros, and since these cannot affect the sum, we 
conclude that both E &+ and &- diverge. Let 0,' and 0; denote the nth 

partial sums of I;: &+ and I;: 4-, respectively. Clearly, 0,' + + 03 and 0; + + 03 

since they are both divergent monotonically increasing sequences. Hence, by 
taking n sufficiently large, we can find a Df and a D; larger than any real 
number. 

Let { a n }  and { &} be sequences of finite real numbers such that an -+ a ,  
P n  + p, p1> 0 and, for every n, a n  < fin. We can now define two increasing 
sequences of integers { rn} and { S n }  inductively by the following procedure. 

c,' and I;: c; diverges, then 

c; diverge. 
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Let rl and s1 be the smallest positive integers such that 

DT', ' P1 

D;]-D& < ( ~ 1  

Having chosen rl ,  . . . , rn-1 and SI, . . . , Sn-1 such that, for 1 s j s n- 1, 
rj and s j  are the smallest integers for which 

D;-Di& > P j  

D & - D 6 < a j  

we let rn and S n  be the smallest integers such that 

With these sequences of integers, we construct the following rearrange- 
ment of cn:  

d;t+&++. . . + d $ l - d ~ - ~ -  - . . . -dsl+d,+,,l 
+drl+z+- - -+dr,-dsl+l-&,+z -. . . -d,,+. . e 

Now let An denote the nth partial sum of this series. Then for every positive 
integer n, 

and, since rn and S n  are the smallest integers for which this is true, 

I A(rn+sn - 1 )  - d,+, G P n  

A( rn + S n )  + d~ 3 a n  

(1 0 -1 3) 

(10-14) 

Clearly {A(rn+sn-1)} and {A(rn+sn)} are subsequences of { A n } .  Hence, 
equations (10-13) show that 

>lim sup P n = P  (10-15) lim sup An a lim sup A (rn+sn-l)-- 

(10-16) 

n--tm n'm n - m  

lim inf An Q lim inf A(rn+sn! G liy+igf an= a 
n - m  n - - t s  
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If p = + ~ ,  we see that equation (10-12) is true and, if a=-a, equation 
(10-11) is true. 

c, converges, 

Theorem 10.3 shows that there exists an integer N1 such that d$, < ~ / 2  for all 
n 2 N 1  (recall that { r,} is monotonic). The condition Pn --j P shows that there 
is an integer N z  such that for all n 2 N,,  Pn < p + 4 2 .  Hence, if N=max 
(N1, Nz}; it follows from equations (10-14) that, for n 2 N ,  

Assume first that p is finite and let E > 0 be given. Since 

A(,,+ sn - 1) < P + E  (10-1 7) 

For any k 2 r N +  S N - ~ ,  there is a unique integer n 2 N such that r,+ s,-~ d k < 
r,+l+ Sn. The method of construction shows that 

and, since equation (10-17) shows that both of these are less than p+ E, we 
conclude that Ak < p+ E for all k 2 ~ N + S N - ~ .  Hence, 

lim s u p A k d p + ~  
k-t m 

and, since E was arbitrary, 

lim sup AI, d p 
k-t m 

Combining this with equation (10-15) shows that 
lim sup A n = P  

n+ m 

An almost identical argument shows that, when a is finite, 

lim inf A ,  = a 
n+ m 

The proofs for the two cases P=--M) and a=+m follow by similar argu- 
ments. 

Theorem 10.14: If b, is an absolutely convergent infinite series in a 
Banach space, then it also converges unconditionally. 

Proof: Suppose b,. Let the nth partial sum of 

]c b, be S, and the nth partial sum of ]c bz  be s z .  Let E > 0 be given. Then 

b: is a rearrangement of 

202 



INFINITE SERiES 

there is an integer N such that m 3 n B N implies 

(10- 18) 

Now, there is a bijective function f: J+ J such that b: = bfln) for every 
positive integer n. Since f is surjective, it follows that f d f - l  ( Y )  ) = Y for every 
Y C J .  In particular, let Y= { 1, 2 ,  3, . . ., N } .  Since f is injective, f - l ( Y )  
contains at most N positive integers; that is, f - l ( Y )  is a finite set of positive 
integers. Hence we can choose an integer p such that p > m for all m E f - l ( Y ) .  
Then, 

Therefore 
f-V) c ( 1 , 2 9 3 ,  - - 9  PI 

Thus, if i > p ,  the vectors bl ,  . . ., bN will cancel in the difference 

i i 

j= 1 j= 1 

s i - s : = x  b j - x  bf(j ,  

Hence, we conclude from equation (10-18) that, for i > p ,  

where k is some integer greater than N .  Theorem 10.10 shows that E bn con- 
verges. If we let s be its sum then there is an integer P such that i 3 P impl.ies 

Hence, for j 3 max { P ,  p }  we find that 

That is, the infinite series b z  converges to the same sum as bn. 

In the case of infinite series of complex numbers we have the following 
converse to Theorem 10.14. 
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.15: Let (an)  be a sequence of complex numbers. I f  
ionally, then it converges absolutely. 

Proof: Suppose ]c an converges nonabsolutely and let X n  and y,  be the real 
and imaginary parts of a,, respectively; that is, a, = X, + iy,. 

Since la,/ lxnl + I ynl and since, by assumption,x lan/ diverges,Theorem 
10.7(b) shows that ( lxnl + 1 y , ( )  diverges. We conclude that either 

1 ynl diverges for if both converged, Theorem 10.6(b) w 

+ 1 y,l) converged also. 

Since an converges by assumption, we conclude from Theorem 10.6(a) 

that ]c X n  converges and X n  or x yn  converges 
nonabsolutely. We see, therefore, from Theorem 10.13 that there is a rear- 
rangement a*, of an such that if .,* and y: are the real and imaginary parts, 
respectively, of a:, either y,* diverges. Now since Theorem 10.6(a) 
shows that the convergence of a: implies the convergence of both 
]c x,* and an does not converge 
unconditionally. 

yn  converges. So  either 

x,* or 

y,*, we conclude that ]c a,* diverges. Hence 

We have in fact proved more than the statement of the theorem. We have 
shown that if a sequence of complex numbers a,  converges nonabsolutely, 
then there is a divergent rearrangement of an. Now Theorem 10.14 shows 

that, if an converges absolutely, every rearrangement of ]c a n  converges to 
the same sum. Since, if any given infinite series converges, it either converges 
absolutely or it converges nonabsolutely, we conclude that the following 
theorem holds. 

Theorem 10.16: If a, is an  infinite series of complex numbers all 
of whose rearrangements converge, then they necessarily all converge to ‘the 
same sum. 

This theorem shows that for infinite series of complex numbers the phrase 
“to the same sum” can be omitted in Definition 10.12. 
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It was shown in chapter 8 that if E is any set andX is a set with a certain 

“algebraic structure,” then this “algebraic structure” on X “induces” an 
“algebraic structure” on the family P ( E ,  X) of all functions from E to X. 
This led in a natural way to the construction of linear spaces whose points are 
functions.35 In this chapter we show that if E is an arbitrary set and X is any 
metric space then the “metric structure” on X “induces” a “metric structure” 
on F ( E ,  X ) .  As in chapter 8 this leads to the construction of metric spaces 
whose points are functions. The “powerful machinery” which has been 
developed in the course of our study of metric spaces is then applied to these 
function spaces and some very useful results are obtained. This is one of the 
major justifications for studying the theory of metric spaces. 

As in chapter 8 we shall also be concerned herein with the family g ( E , X )  
of all bounded functions from E to X and, when E is also a metric space, 
with the families %?(E, X )  of all continuous functions from E toX and g m ( E , X )  
of all bounded continuous functions from E to X.36 

We shall approach the material in this chapter by considering sequences 
of functions. To this end let E be any set and let (X, d )  be an arbitrary metric 
space. Let {fn} be a sequence in F ( E ,  X )  . Evidently, each term of this sequence 
is a function.35 We now ask how we might define convergence for this sequence 
in a useful way. Perhaps the most obvious way to do this is to say that cfn} 
converges if there is a function g : E  + X such that, for every x E E ,  

lim 
n-+m 

This is the notion of pointwise convergence. There is, however, another way 

35 See the last sentence of the paragraph immediately following Definition 4.1. 
36 The notation 9 ( E ,  X ) ,  B ( E ,  X ) ,  %?(E,  X )  , and V”(E, X )  will always be used to denote, respectively, the family 

of all functions from E to X ,  the family of all bounded functions from E to X ,  the family of all continuous functions 
from E to X ,  and the family of all hounded continuous functions from E to X except when X is the real or complex 
numbers with the usual metric in which case the notation 9 ( E ) ,  B ( E ) ,  V ( E ) ,  and %?-(E) will sometimes be used. 
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to define convergence which is analogous to uniform continuity of functions. 
In view of this we make the following definition. 

Definition 11.1 : Let { fn}  be a sequence of functions from a set E to a 
metric space ( X ,  d ) .  If there exists a g :E+ X such that, for  every x E E and 
for  every E >0, there exists an integer N depending on x and E for which 

(1 1-1) 

whenever n 3 N ,  we say that { fn} converges to g pointwise on E .  
I h  on the other hand, there exists a single integer N for  each E > O  such 

that, whenever n 2 N ,  equation (11-1) holds for  all x E E ,  we say that { fn}  
converges to g uniformly on E and that g is the uniform limit of { fn} .  

Of course, uniform convergence implies pointwise convergence. For 
uniform convergence, we can for each E find a single N which will do for all x; 
whereas, for pointwise convergence, we have to use different N ' s  for different 
x's in order for equation (11-1) to hold. Uniform Convergence of a sequence is, 
generally speaking, a more desirable property than just pointwise convergence. 
This is due, at least partially, to a fact which we shall prove subsequently; 
namely, uniform convergence is equivalent to the convergence of a sequence 
of points in a suitable metric space. In general, this is not true for sequences of 
functions which are only pointwise convergent. 

Apropos of this remark we will prove the following theorems. 

Theorem 11.2: Let { fn}  be a sequence of functions from a set E to a 
metric space ( X ,  d ) .  Then { fn )  converges uniformly to g i f  and only ih for every 
E > 0, there exists an integer N such that 

Proof: It is clear that, if equation (11-2) holds, 

(11-2) 

for all x E E. Hence equation (11-2) implies { fn} converges uniformly to g. 
Suppose { fn}  converges uniformly to g. Then, given E > 0, we can find an N 

such that, for every x E E ,  
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d ( f n ( 4  7 g ( x )  1 < 5 
whenever n 3 N .  Hence, 

E 
lub d ( f n ( x )  g ( x ) )  5 < E x E E  

which shows that the uniform convergence of { f n }  implies equation (11-2). 

In everything done so far, we have always taken the distance between any 
two points in a metric space to be a finite number, but, as pointed out in 
chapter 6, we can allow the distance to take on values in the extended real 
number system. In what follows we shall allow possibly infinite metrics but 
when this is done it will always be stated explicitly! We note, in passing, that 
all the definitions given for metric spaces with finite metrics carry over to the 
case where the metric can be infinite and that the proofs of most of the theorems 
do also. 

Theorem 11.3: (a) Let F ( E ,  X )  be the fami ly  of all functionsfrom the 
set E to the metric space ( X ,  d ) .  Then F ( E ,  X )  together with the function A 
defined by  

A(f, g ) = ~ ~ b , d d f ( x ) ,  g ( x > )  for allf, g E F ( E ,  x) (1 1-3) 
I 

is a metric space (with possibly infinite metric). 
(b) Let B ( E ,  X )  be the fami ly  of all bounded functions from the set E to 

the metric space ( X ,  d ) .  Then B ( E ,  X )  together with the restriction37 of the 
function A defined by equation (1 1-3) is a metric space (with finite distance). 
Proof: Part (a). We must show that A satisfies conditions (a) to (c) of Definition 
6.1. 

(a) It is clear that A(f, g) 3 0 since, for each x E E ,  d ( f ( x )  , g ( x ) )  is. 
Since 0 d d ( f ( x ) ,  g ( x ) )  A(f, g) for every x E E ,  it is also clear that 
Adf, g )  = 0 implies f ( x )  = g ( x )  for every x E E and, therefore, that f=g. 
In view of the fact that d (f (x), f (x)) = 0 for every x E E ,  it follows that 
AU-9 f ) = O .  
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(b) It is obvious from equation (11-3) that 

A ( f ,  9) = A ( &  f)  

for every x E E ,  we see that 

lubdCf(x), g(x>> 

Hence, 

lub [ d ( f ( x ) ,  h ( x ) ) + d ( h ( x ) ,  g ( x ) ) ]  
x E E  x E E  

dlubdCf(x) ,  h ( x ) )  +lubd(h(x) ,  g ( x ) )  
x E E  x E E  

ACf, g) ACf, h )  + A ( h ,  g )  

for all f ,  g, h E F ( E ,  X ) .  
Part (b). It follows from part (a) that the restriction of A to B ( E ,  X )  

x B ( E ,  X )  is a metric for B ( E ,  X )  .38 Hence we need only show that this restric- 
tion of A is a finite metric. To this end, choose f and g in .%'(E, X ) .  Evidently 
d ( f ( E ) )  < 03 and d ( g ( E ) )  < 03. Fix xo E E.  Then 

d (f (4 , g ( x )  ) d d C f ( 4  7 f (4 1 + d Cf(x0) 7 g(x0) 1 
+ d (dxo)  7 g ( x >  ) d d CfW> ) + d (f (4 9 g(x0) ) + d M E )  ) 

Hence 

A ( f ,  g)=supdCf(x), g ( x > >  a d d f ( E > > + d ( g ( E ) ) + d ( f ( x o ) ,  g ( x 0 ) )  
x E E  

Since d is a finite metric for X ,  the right side of the inequality is clearly a finite 
number and the theorem is proved. 

Figure 11-1 illustrates the concept of a ball in the metric space (.F(E), A ) ,  
where @ ( E )  is the family of all real functions defined on the interval [0, 11. 

In this chapter the symbol A will always be used to denote the metric 
(or any of its restrictions) defined by equation (11-3). It is now clear that, 
if un} is a sequence of functions from a set E to a metric space ( X ,  d ) ,  then 
the uniform convergence of { f.} to a function g : E + X  is equivalent to the 
convergence of the sequence { fn} of points of the metric space ( F ( E ,  X ) ,  A) 
to the point g of ( F ( E ,  X )  , A )  in the sense of Definition 7.1. For this reason 
A is sometimes called the metric of uniform convergence. It should be noted 

38 (.%'(E, X ) ,  A) is, of course, a subspace of ( F ( E ,  X ) ,  A).  

208 



FUNCTIONS AND FUNCTION SPACES 

y l  
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FIGURE 11-1.-Illustration of balls in 9 ( [ 0 ,  11) (family of functions defined on interval 
LO, 11) B ( f ;  E ) = k E F  (LO, 1 1 > l A ( f , g > < E ) ;  A ( f , g ) =  lub If(x)-g(x)I. 

x E [ O ,  11 

that although all of the theorems about metric spaces which we have developed 
previously apply to the metric space (L%'(E, X ) ,  A ) ,  they cannot always be 
directly applied to ( F ( E ,  X ) ,  A) since we have allowed an infinite distance 
between points in F ( E ,  X ) .  However, many of these theorems do hold for 
( F ( E ,  X ) ,  A).  For example, as indicated in chapter 9, every convergent se- 
quence is a Cauchy sequence even in a metric space with a possibly infinite 
metric. 

Theorem 11.4: Suppose ( X ,  d )  is a complete metric space and E is 
any set. Then: 

(a) ( % ( E ,  X ) ,  A )  is a complete metric space (with a possibly infinite 
metric). 

(b) ( B ( E ,  X ) ,  A )  is a complete metric space ((with finite metric). 
Proof: Part (a). Let i f n }  be any Cauchy sequence in ( F ( E ,  X ) ,  A). 
Since, for every x E E ,  d(fm(x), fn(x)) d A&, f n ) ,  it follows that, for each 
fixed x E E ,  the sequence un(x)} is a Cauchy sequence of points of X .  Since 
X is complete, this sequence converges. Hence we can define a function 
f : E - X  by 

f ( x )  = gt- f n ( x )  for each x E E 

We shall show that f n + f i n  ( F ( E ,  X ) ,  A ) .  To this end let E' > O  be given. 

209 



ABSTRACT ANALYSIS 

For each x E E ,  we can find an integer N ’ ( x )  such that d c f ( x ) ,  fm(x)) < E’ 

whenever m 3 N ’ ( x ) .  Now, for any integer n and for any integer m 3 N ‘ ( x )  
equation (6-4) implies 

This shows that for each x E E 

Now fix E > 0 and choose a positive integer N such that, for all m, n 3 N ,  

It follows from this that, for every x E E ,  and every m, n 3 N ,  

Combining this with equation (11-4) shows that for each fixed n N 

for every x E E. Hence, E / Z  is an upper bound of the set 

and so 

for any n 3 N .  This proves thatf,+fin ( @ ( E ,  X )  , A) and, since {fn} was any 
Cauchy sequence in ( F ( E ,  X )  , A ) ,  this proves that ( F ( E , X )  , A) is complete. 

Part (b). Let {fn} be a Cauchy sequence in (L%’(E, X ) ,  A).  Clearly{fn} is 
also a Cauchy sequence in ( F ( E ,  X )  , A).  Hence it follows from part (a) that 
{ fn} converges to a point f of F ( E ,  X )  . Thus if we can show that f E L%’ ( E ,  X )  , 
then we can conclude that {fn} converges in (L%’(E, X )  , A).  

Evidently there exists an integer N such that d(fN(x), f ( x ) )  < E for all 
x E E. Hence 
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for every x, y E E .  Therefore, 

When the set E of Definition 11.1 is also a metric space, we can consider 
sequences of continuous functions. This leads us to a consideration of the 
family %?'(E, X )  of all continuous functions from E to X and of the family 
5Ym(E, X )  of all bounded continuous functions from E to X .  Corollary 1 of 
Theorem 8.20 shows that if E is a compact metric space then 
V ( E ,  X )  =%+(E, X ) .  

There is however another family of continuous functions which is also of 
some interest. This is introduced in the following definition. 

Definition 11.5: Let f be a continuous function from a metric space 
( E ,  d ' )  to a metric space ( X ,  d ) .  W e  say f vanishes at infinity if, f o r  any 
E > 0, there exists a compact set K C E such that d (  f (K")  ) < E .  Let %?o(E, X )  be 
the fami ly  of all continuous functions f rom E to X which vanish at inJinity. 

Theorem 11.6: If c f n }  is a sequence of continuous functions from a 
metric space ( E ,  d ' )  to a metric space ( X ,  d )  which converges uniformly to a 
function f : E +  X ,  then f is continuous. 
Proof: Choose a point x of E and fix E > 0. Since c fn}  converges uniformly, 
we can find a positive integer N such that, for all points y E E ,  

as soon as n 2 N .  Now, for each n, the continuity offn at x shows that there is 
a 6 > 0 such that 
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This shows that for any t E B ( x ;  S ) ,  

Now for n 2 N  and t E B ( x ;  6) 

Equation (11-5) shows that the first and last terms on the right of this inequality 
are both less than 4 3  and equation (11-6) shows that the second term is also. 
Hence d ( f ( x ) ,  f ( t ) )  < E  for all t E B ( x ;  8); that is, f ( t )  E Bdf(x) ;  E )  which 
proves that f is continuous, since x was an arbitrary point of E. 

To see that the sequence must be uniformly convergent in order for the 
theorem to hold, we need only consider the pointwise convergent sequence of 
continuous real valued functions { f n }  defined on R ’ by 

for allx E R’; n=l ,  2, 3 . . . (11-7) 1 
f n ( 4  = 1 + nx2 

Since 
lim f n ( 0 )  = lim 1 = 1 
71-x n-x  

and since, for x E 0, 
lim f n ( x )  = 0 
71-x 

we see that this sequence converges to a discontinuous function. 

Corollary 1: Let ( E ,  d ’ )  and ( X ,  d )  be metric spaces. 
(a) The f a m i l y V x ( E , X )  is a closed subset of the metric space (L%’(E, X ) ,  A) .  
(b) If ( X ,  d )  is a complete metric space, then ( V x ( E ,  X )  , A )  is a complete 

(e) The familyVo(E,  X )  is a closed subset of the metric space ( V x  ( E ,  X )  , A ) .  
(d) If ( X ,  d )  is a complete metric space, then (%o(E, X )  , A) is a complete 

(e) If ( X ,  d )  is a complete metric space and ( E ,  d ‘ )  is a compact metric 

metric space. 

metric space. 

space, then (%‘(E, X )  , A )  is a complete metric space. 
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Proof: Part (a). Clearly g W ( E ,  X )  is a subset of the metric space ( B ( E ,  X ) ,  A) .  
Let f be a limit point of g W ( E ,  X ) .  Then Theorem 7.4 shows that there is a 
sequence {fn} of points of 5fm(E, X )  which converges to f (recall that every 
limit point is an adherence point). Since fn is continuous for every n, Theorem 
11.6 shows thatfis continuous. Nowfis obviously bounded and s o f  E Vm(E,X).  
Hence, in view of the fact thatfwas any limit point of V m ( E , X ) ,  this shows that 
5fm(E, X )  is closed. 

Part (b). Theorem 11.4 shows that ( B ( E ,  X ) ,  A) is complete. Hence part 
(a) and Theorem 9.9 show that the subspace ( gm(E,  X ) ,  A) is complete. 

Part (e). Let g be any point of %?o(E, X ) .  Clearly g is continuous and there 
exists a compact subset K1 of E such that d(g(K,") )  < 1. Corollary 1 of Theo- 
rem 8.20 shows that there exists a finite real number M such that d(g(K1)  ) < M .  
Since 

&?(E) = d K 1  u Kf) = g ( W  u g(K,C) 

it is easy to verify that 

if both g(K1)  and g(KF) are nonempty and that 

if either g(K1) or g(Ky)  is empty. Since d ( g ( K 1 ) ,  g (KF))  is the greatest lower 
bound of a set of finite positive numbers it is certainly finite and so these last 
two inequalities show that d ( g ( E ) )  is finite. Hence g is bounded and con- 
tinuous. Since g was arbitrary this shows that %'o(E, X )  is a subset of the 
metric space ( gW(E,  X )  , A).  

Now letfbe a limit point of gO(E, X )  (in the metric space ( g m ( E , X ) ,  A)). 
Then f is certainly continuous and Theorem 7.4 shows that there exists a se- 
quence {fn} of points of %o(E, x) which converges tof. Let E > 0 be given and 
choose N so large that A (f, fN) < ~ / 3 .  Since fN vanishes at infinity there exists 
a compact subset K of E such that d ( f n ( K C ) )  < 4 3 .  Hence for every x, y E K" 

Therefore, 
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d ( f ( K “ )  ) = lub d ( f  (4 7 f ( Y )  1 E 
r E K‘ 
j E h‘ 

Hence f vanishes at infinity and therefore f E %o(E, X ) .  Since f was any limit 
point of %<)(E, X )  this shows that %()(E, X )  is closed. 

Part (d). We see from part (b) that ( % x ( E ,  X ) ,  A) is a complete metric 
space. Hence part (e) and Theorem 9.9 show that the subspace (%,)(E,  X )  , A) 
is complete. 

Part (e). This is an immediate consequence of the remarks preceding 
Definition 11.5 and of part (b). 

The space of continuous functions was first discussed by F. Riesz in 1918. 
Let x be a limit point of the metric space ( E ,  d ’ ) .  According to Theorem 

8.4, a function f: E + X is continuous at x if and only if 

lim f ( t )  = f (x) 

Now if {A l }  is a sequence of continuous functions from E to X ,  it is clear that 
Jl(x) =I lim A,( t ) .  But if the sequence { f,,} converges either pointwise or uni- 
formly, ‘Zen there is a function f: E + X such that lilifil(t) = f ( t )  for every 
t E E. So, in particular, f ( x )  =lim J l ( x )  =lim lim f , , ( t ) .  Hence, if the limit 

f of the sequence (5,)  is continuous at x ,  then 

I - x  

n + x  fl’= l ’Z 

That is, the order in which the limit processes are carried out is immaterial. 
In view of these remarks the following is an immediate corollary to Theorem 
11.6. 

Corollary 2: Let {A,} be a uniformly convergent sequence of continuous 
functions from the metric space ( E ,  d’) to a metric space ( X ,  d )  and let x E E 
be a limit point of E. Then 

If (5,)  is the sequence of continuous functions defined for every real 
number x by equation (11-7), then 

lim lim J , ( t )  = ! i ~ ~  O =  0 
t - 0  n - + x  

and 

214 



FUNCTIONS AND FUNCTION SPACES 

lim lim fn(t) = lim 1 = 1 
n-+m t + U  n-+m 

so that ungorm convergence of a sequence is in general necessary to be able 
to interchange the limit processes. However, this is not always the case. In 
fact there is no converse to Theorem 11.6; that is, a sequence of continuous 
functions may converge to a continuous function even though the convergence 
is not uniform. This can be verified by considering the following example. 

Let { fn) be the sequence in $7 ( [x, 11 ) , which is defined by 

For 0 < x < 1, it follows from the last equation of chapter 7 that 

lim f n ( x )  = 0 
n 4 m  

Since fn (0) = 0, we see that 

Suppose the convergence of {fn} is uniform. Then Theorem 11.2 shows that, 
given E > 0, there exists an N such that n 3 N implies 

(11-8) 

Since [O, 11 is compact, we know, from the second corollary to Theorem 8.20, 
that for each n , f n ( x )  is equal to lub Ifn (x) I at some point x E [0,1]. This point 
obviously occurs where f n ( x )  is a maximum, that is, at x= l/VZn+ 1. Thus, 

O C X S l  
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Hence equation (11-8) cannot be satisfied and therefore we conclude the 
convergence of c f n }  cannot be uniform. 

There is, however, at least one case where we conclude, from the fact 
that a sequence of continuous functions converges to a continuous function, 
that the convergence is uniform. This important result is known as Dini’s 
theorem. 

Theorem 11.7: If { f n }  is a sequence of real-valued continuous functions 
defined on a compact set K which converges pointwise to a real-valued contin- 
uous function f on K and i f  it is also true that, for everyx E K ,  f n ( x )  b f n+I (x )  
for n= 1, 2,  3, . . ., then { f n }  converges to f uniformly on K.  
Proof: In view of Definition 8.11 we can define a sequence of real functions 
k n }  on K by 

gn=fn-f f o r n = l , 2 ,  3, . . . 
Then Theorem 8.16(a) shows that {gn} is a sequence of continuous functions 
and Theorem 7.7 shows that, for every x E E ,  lim g,(x)=O; that is, {gn} 
converges to zero pointwise on E .  Now since, for each n, Ign(x) -0 1 =r 1 f n ( x )  
- f(x) I, we can establish the theorem by proving that {gn} converges to zero 
uniformly on K. 

n- m 

It is clear that, for each n and every x E K ,  

So given E > 0, we can find, for each x E K ,  a positive integer n ( x )  such 

Since each g n ( x )  is a continuous function which is always nonnegative, 
can find a 6 ( x )  > 0 such that 

that 

we 

Thus, for every y E B ( x ;  6 ( x ) ) ,  

0 d g n ( x )  ( Y )  < E 
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It follows from equation (11-9) that whenever n 2 n ( x ) ,  

whenever y E B ( x ;  a(%)) and n 2 n(x ) .  Now since K is compact and 
{ B (x; 6 (x) ) Ix E K }  is an open covering of K ,  we can find finitely many points 
of K ,  say x1, . . . , X m ,  such that 

K c B(x1; 6(x1)) u . . . u B(xm; 6(xm)) (1 1-1 1) 

Set N =  Imax n(xJ :  Equations (11-10) and (11-11) now show that 
< i s m  

O < g n ( y ) < E  

for every y E K and for every n 3 N .  This implies that {g,} converges to zero 
uniformly on K. 

We might point out that the sequence of functions {fn} defined by equation 
(11-7) forms a monotonically decreasing sequence at each point of R1. If, for 
each n, we let gn be the restriction offn to (0, l), then { g , }  converges to zero 
at each point of (0 , l )  and hence to a continuous function. But the convergence 
is not uniform since lub Ign(x) - 0)  = 1 and so cannot be made less than any 

positive number E .  The reason this sequence does not satisfy the requirements 
of Theorem 11.7 is that (0, 1) is not a compact set. 

Consider the sequence { p n  ( a ) }  defined recursively by equation (9-15). 
We have shown that this sequence converges to < for each a E [0, 11 and 
that p,(O) = O  for every n. It is clear from equation (9-15) that ~ ~ + ~ ( a )  is a 
polynomial in { a }  whenever p , (a )  is. Clearly p l ( a ) = Q a  is a polynomial in 
{a} .  Hence we conclude by induction that p n ( a )  is a polynomial in {a}  for 
every positive integer n. 

x E 

If 0 6 p,(a) d a ,  then equation (9-15) shows that 

Pn+1(a)=pn(a)+Q(u-Cpn(a)l2)=Q[(1+a)-(l -pn(a))2] 
d + [ (1 + a )  - (1 - a)2] = * (1 + a )  a d a 

and 
pn+ 1 ( a )  = * [ (1 + a) - (1 -pn(a))2] 2 Q [ 1 + a - 11 = +a 2 0 

Clearly p1 ( a )  = (1/2) a lies between 0 and a. It therefore follows by induction 
that 0 6 p , (a )  d a for every n. 

21 7 



ABSTRACT ANALYSIS 

Equation (9-15) now shows that 

pn+l (a)-p,( a ) = 3 ( a  - [pn(  a ) ] ' )  3 +(a  - a') =+( 1 - a )  3 0 

Hence p n + l ( a )  a p n ( a )  for all a E [0, 11. Thus we have shown that { p , ( a ) }  
is a monotonically increasing sequence 39 of polynomials which converges to 
<a for each a E [0,1].  The discussion following 8.17 now shows that for each 
n the function Pn from [0, 11 into R 1 ,  whose value at a is p , ( u ) ,  is continuous. 
It is not hard to show that the function h which assigns to each a E [0, 11 the 
value 6 is also continuous. Hence we may conclude after applying Dini's 
theorem that the sequence {pn} defined recursively by equation (9-15) is a 
monotonically increasing sequence of polynomials 40 on [0, 11, which converges 
uniformly to the function h which assigns to each x E [0, 11 the value fi. 
In addition, Pn (0) = 0 for every n. 

Now let 8 : [- 1, 1]+ [0, 11 be defined by 

for all x E [- 1, 11 
Then 

h o d ( x ) = h ( 8 ( x ) ) =  1x1 for allx E [-1, 11 

Let E > 0 be given. We have shown that there exists a single integer N such 
that for every n 3 N 

I h ( t )  -p,(t) I < E for all t E [0, 11 

Since e( [- 1, 11) C [0, 13, it follows that for every n 3 N 

Ih (e (x ) ) -P , ( e (x ) ) I<E for allx E [-I, 13 

In view of the fact that p n ( t )  is a polynomial in { t }  for every t E [0, 11, it 
is clear that 

is a polynomial in {x} for every x E [- 1, 11. Hence the function P ,  whose 

3y The convergence of the sequence of polynomials { p , ( a ) }  can now also be deduced from Theorem 7.11. 
If S is any subset of R' we use the terminology "polynomial (defined) on S" to mean a polynomial in\{ l,js} where 

j ,  is the natural injection of S into R' and 1 is the constant function which assigns the number 1 to every x E S. Thus a 
function p of the form 

is a polynomial on S. 
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value at each point x E [l,  11 is Pn(x) is a polynomial defined on [-1, 11. 
Since p,(O) = 0, we see that Pn(0) =O. Evidently for every n 3 N 

11x1 -P,(x)I< E for all x E [-I, 11 

We have therefore proved that there exists a sequence {P,} of polynomials 
defined on [- 1, 11 which converges uniformly to the function g which associates 
with each x E [- 1, 13 the value 1x1, and that for  every n, P,(O) =O. We shall 
use this result subsequently. 

Theorem 8.12 shows that the family F ( E ,  M )  of functions which map 
the set E into the linear space (algebra) M is itself a linear space (algebra) 
with the pointwise definitions of addition, multiplication, and scalar multiplica- 
tion given in Definition 8.11. Moreover g ( E ,  M ) ,  %‘(E, M ) ,  and g X ( E ,  M )  are 
linear subspaces (subalgebras) of F/(E, M ) .  If, in addition, M is a normed linear 
space (normed algebra), we can define a norm on g ( E ,  M )  by 

llfll = I  lub Ilf (4 II for every f E B ( E ,  M )  (1 1- 12) 
? x  E E 

Then B ( E ,  M )  is a normed linear space (normed algebra). The proof that 
equation (11-12) defines a norm on %’(E; M )  -that is, that it satisfies axioms 
(Nl) to (N3) of Definition 3.4 (and Definition 8.14 if M is also an algebra)-can 
be carried out in almost exactly the same way as the proof of Theorem 11.3 
and so we will not do so here. The norm defined on g ( E ,  M )  by equation (11-12) 
is called the supremum norm. With this definition of norm it is clear that, when 
a metric is defined on % ( E ,  M )  in terms of this norm in the usual way (Le., 
by eq. (6-1)), we arrive at the metric space ( B ( E ,  M ) ,  A) introduced in 
Theorem 11.3. Thus all theorems proved about the metric space (.B’(E, M )  , A) 
can be applied to this normed linear space (normed algebra). In particular, the 
following theorem is an immediate consequence of Theorem 11.4(b). 

Theorem 11.8: Let M be a Banach space and let E be any set. Then 
9 ( E ,  M )  is itself a Banach space with supremum norm defined by equation 
(11-12). If, in addition, M is a Banach algebra, then B ( E ,  M )  is also a Banach 
algebra. 

Suppose that M is a normed linear space and E is any set. 
In view of Definition 10.1, it is clear that, with each sequence {f,} in 

f n  and that we can apply the % ( E ,  M ) ,  we can associate an infinite series 
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theorems of chapter 10 to this series. We see that, if sa is the nth partial sum 
of f n ,  then, for every x E E ,  

11 

sn(x)  = x f i ( x >  
i= 1 

So this definition of an infinite series of functions reduces to the familiar one 
in the case when M is the complex numbers with the usual metric or the 
Euclidean space R'. We see also that the sequence of partial sums { S n }  is a 
sequence of functions from E to M and so we say that the infinite series x f n  
converges pointwise or uniformly on E i f  {Sn) converges pointwise or uniformly 
on E. It follows from Theorem 11.2 that the infinite series x f n  converges in 

the normed linear space B ( E ,  M )  (i.e., in the supremum norm) if and onIy 
if it converges uniformly on E. We may, for example, apply Theorem 10.7(a) 
to the sequence of functions {fn}. Thus, by combining Theorems 11.8 and 
10.7(a) with the remarks following Theorem 11.3 and using the fact that, if 
for some finite number a ,  llf(x)11 a for all x E E ,  then 11 f Il=lub 11 f (x)lld a, 
we arrive at the following theorem. x E E  

Theorem 11.9: Suppose { f n }  is a sequence of functions from a set E to a 
Banach space M and suppose that, for  every x E E ,  

Ilfn(x>II G an 

Then fn converges uniformly on E if  an converges. 

( n = 1 ,  2 ,  3 ,  . . .) 

We shall now use the material developed in this section combined with 
Theorem 9.19 to obtain a result from the theory of differential equations known 
as Picard's theorem. 

Consider the differential equation 

where f is continuous on the 2-cell 

Q =  { (x, y )  la1 d x d b~ and a2 d y 6 b2} 

and for each fixed x E [ a l ,  b l ]  satisfies the Lipschitz condition 

(1 1- 13) 
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If I C [a l ,  b l ]  is an interval containing xo, then g : I-+ R 1  is a solution of 
the differential equation (11-13) satisfying the initial condition 

for (xo, yo) E Q if and only if g satisfies the integral equation 

We shall now show that the integral equation (11-16) and hence the differ- 
ential equation (11-13) with the initial condition (11-15) has a unique solution, 
when the interval I is sufficiently small. 

To this end we note that sincefis a continuous function on the compact 
set Q, corollary 1 to Theorem 8.20 shows that f is bounded on Q. Hence there 
exists a constant K such that 

If(% Y) I d K for all (x, y) E Q (11-17) 

Choose a positive number a such that M u  < 1 and such that the 2-cell 

Q ’ =  { (x, Y ) / X O - U  d x d xO+ U ,  y 0 - K ~  d y d y o + K ~ }  

is a subset of Q. Now set I=[xg-a, xo+a] and let kf be the set of all con- 
tinuous real valued functions on I with values in [yo-Ka, yo+Ka].  That is, 
g : I R1  belongs to g if and only if 

Thus 8 is the closed ball with center at the constant function yo in the metric 
space ( % ( I ,  R l ) ,  A ) .  Hence 2Y is closed and corollary l(e) of Theorem 11.6 
shows that ( @ ( I ,  R 1 ) ,  A )  is a complete metric space. Therefore Theorem 9.9 
shows that (g, A )  is a complete metric space. Now consider the mapping 
T : kY+ Z? defined by 

(T(g) ) (x )=yo+ I X f ( t ,  g ( t ) ) d t  for all x E I and all g E ZY 
xo 

To see that T maps ZY into itself we notice that it follows from equation 
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(11-17) that 

for every g E 8. Hence T ( g )  E 8. 
Evidently equation (11-16) can be written as 

Furthermore, it follows from equation (11-14) that for all gl, g 2  E 8 

Since M a  < 1, this shows that T is a contraction mapping on 8 and so Theorem 
9.19 shows that there is a unique functiong E 8 such that 

Hence the function g is a unique solution of equation (11-13). Notice that in 
addition Theorem 9.19 gives us a convergent iterative procedure for solving 
equation (11- 16). The ideas developed 
application. 

We now introduce a concept which is 
of continuous functions. 

in this example have very wide 

particularly important for the space 
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efinition 11.10: A subset K of the metric space ( X ,  d )  is said to be 
relatively compact if its closure K is compact. 

It follows from Theorem 6.22 and the fact that every closed set is equal to 
its closure that all compact sets are relatively compact. The Heine-Bore1 
theorem (Theorem 6.31) shows us that the compact sets in R" are simply those 
sets which are closed and bounded. However, Theorem 9.4 shows that every 
bounded set has bounded closure. Thus, the subsets of R" with compact 
closure and the bounded subsets of R" are the same sets. For this reason it is 
generally true that, in arbitrary metric spaces (and, for that matter, topological 
spaces), the relatively compact sets play the same role as the bounded sets do 
in R k .  

The next theorem gives us another way of characterizing relatively com- 
pact sets. 

Theorem 11.11 : A subset K of a metric space ( X ,  d )  is relatively com- 
pact if and only if every sequence in K contains a convergent subsequence. 
Proof: If K is relatively compact, then, by definition, K is compact. Hence 
Theorem 7.20 shows that is sequentially compact. Since every sequence in 
K is also a sequence in E ,  it follows that every sequence in K contains a con- 
vergent subsequence. 

Conversely, suppose that every sequence in K has a convergent sub- 
sequence and let { ~ n }  be any sequence in K. Since every point of K is an 
adherence point of K ,  we can find, for each integer n, a point xn of K such that 
X, E B(y , ;  l / n ) ;  that is, d ( x n ,  y,) < l /n .  By hypothesis, this sequence {x,) 
of points of K contains a convergent subsequence, say {xnk}.  So let x = lim X n k .  

Theorem 7.4 shows that x is an adherence point of K.  Thus x E I?. 
Now let E > 0 be given. Evidently for each k ,  d (xnk ,  ynk)  < l/nk. Since 

{n,} is an increasing sequence of integers and {x,,} converges to x, we can 
find an integer N such that k: 3 Nimplies l / n k  < 4 2  and d ( x ,  xnk) < ~ / 2 .  Hence, 
for k b N ,  

k+ m 

Therefore, the subsequence {ynk} of {y,} converges to x E K. Since {y,} was 
an arbitrary sequence in K, this shows that is sequentially compact and, 
therefore, by Theorem 7.20, also compact. Thus K is relatively compact. 
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Although relatively compact subsets of the spaces of continuous functions 
are particularly useful, it is generally not easy to tell in practice whether a 
given subset is relatively compact. It is therefore important to develop a useful 
criterion for relative compactness in these spaces. The most frequently used 
criterion of this type is given by what is known alternatively as Arzela’s theorem, 
Ascoli’s theorem, or the generalized Arzela’s or Ascoli’s theorem. Before 
stating this theorem it is necessary to introduce the following concept. 

Definition 11.12: A fami ly  S(X, Y )  of functions from a metric space 
( X ,  d )  to a metric space ( Y ,  d’) is said to be equicontinuous s f o r  every 
E > 0 ,  there exists a single 6 > 0 such that d’(f(xl), f ( x 2 ) )  < E for  every 
f E 8 ( X ,  Y )  and for all xl, x2 E X  for  which d (x l ,  x2) < 6. 

It follows from this definition that every member of an equicontinuous 
family is uniformly continuous. The important additional thing here is that a 
single number 6 can be found which will make d’( f (xl), f (x2)) < E for every 
f €  g(X,  Y ) ;  that is, one number 6 will serve for all f E 8(X, Y ) .  

If 2YK is the set of all functions from X to Y which satisfy a Lipschitz 
condition on X with modulus K ,  then 8~ is an equicontinuous family. 

Theorem 11.13: Let ( X ,  d )  and ( Y ,  d’)  be compact metric spaces. Then 
a subset YC of (%?(X, Y ) ,  A )  is relatively compact if and only if it is equicon- 
tinuous. 
Proof: Suppose YC is equicontinuous. Theorem 7.20 and the corollaries to 
Theorems 7.19 and 6.37 show that every compact set is separable. Hence let 
E be a countable dense subset of X .  The corollary to Theorem 4.17 shows that 
the points of E can be arranged in a sequence {xn}. Let {fi} be any sequence in 
YC. Since {$(x1)} is a sequence of points in the compact set Y,  Theorem 7.20 
shows that {fi} must contain a subsequence, which we will denote by S1 
={fi,k} such that the sequence {fi,k(x~)) of points in Y converges (i.e., lim 

fl,k(xI) exists). Now since {fi,k(xe)} is also a sequence of points in the compact 
set Y ,  we see in the same way as before that {fi, k> must contain a subsequence, 
which we denote by S2= {f2,k}, such that the sequence of points {f2,k(x2)} 
of Y converges. By proceeding inductively in this way, we obtain a countable 
collection of sequences SI, S2, Ss, . . . which can be symbolically represented 
by the array 

k-i m 
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. . . .  

. . . .  

and which have the following properties: 
(a) For every positive integer n, Sn+l is a subsequence of S,. 
(b) The Emf,, k.(x,) exists for every positive integer n. 

(c) If one function precedes another in SI, then these two functions are 
in the same order in every S, until one of them is deleted. Property (c) shows 
that, in moving down from one row to the next in the array, a given function 
can only move to the left and never to the right. 

Now consider the sequence S whose terms are the diagonal elements of 
this array; that is, the sequence 

+ m  

It is easy to see that, for each n, this sequence is, except for possibly its first 
n- 1 terms, a subsequence of S,. Since a finite number of terms cannot affect 
the convergence or divergence of a sequence and since every subse- 
quence of a convergent sequence converges, we see from property (b) that 
lim f,, ,(xi) exists for each xi E E. Let E > 0 be given. Since S is a sequence in 

YC and since YC is equicontinuous, there exists a 6 > 0 such that, whenever 
n+ m 

d ( x ,  x') < 6 

(11-18) 

Since the range E of the sequence {xi} is a dense subset of X ,  we see that 41 

41 If p E X ,  then there exists an xi E E such that d ( p ,  x i )  < 6 and so, for this i, p E B ( z i ;  6).  
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But X is compact and {B(x i ;  6) li E J }  is an open cover for X .  Therefore, we 
can find an integer r such that 

i =  1 

Since every convergent sequence is a Cauchy sequence, it is clear that, for 
1 d i s r, the sequence 

is a Cauchy sequence. Hence we can find, for each i, an integer Ni such that 

(1 1- 19) 

Now let N =  max Ni. Then equation (11-19) must hold for all n, m 2 N .  

If x is any point of X ,  we can choose one of the points x1, xz, . . ., xr, say 
xp, such that x E B ( x p ;  6). Since this means that d ( x ,  xp) < 6, it follows from 
equations (11-18) and (11-19) that, whenever m, n 2 N ,  

l S a S r  

d’(fn,n(x),fm,m(x)) ~’(fn,n(x),fn,n(xp)) +d’(fn;n(x,) ,fm,m(Xp)) 

+ d’ (fm, m ( x p > ,  fm, m ( x )  ) < ;+ ;+; = € 

Hence, for every x E X ,  d(fn,%(X),fm, m(x)) < E for all n, m 2 N and the same 
N will do for all x. Hence 

A ( fn , n fm , m )  = lub d ’ ( fn , n (x ) fm , m (x ) E 
x E X  

for all n, m >, N and f1,1,  . f z , z ,  f3,3, . . . is a Cauchy sequence in the metric 
space ( % ( X ,  Y ) ,  A) .  Since, by corollary 2 to Theorem 9.7 and part (e) of 
corollary 1 to Theorem 11.6, this is a complete metric space,fi,l,&,Z,f3,3, . . . 
must converge. In view of the fact that {fi} was any sequence in Y, we con- 
clude that every sequence in YC contains a convergent subsequence. It now 
follows from Theorem 11.11 that YC is relatively compact. 

Now suppose that % is compact and choose E > 0. Theorem 7.20 and 
the corollary to Theorem 7.19 show that F is totally bounded. Hence let 
N E =  Gfi, fz, . . . ,fn} be an (~/3)-net for Z. Since X is compact, Theorem 8.23 
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shows that, for each k (1 d k s n)  ,fi. is uniformly continuous. We can therefore 
find, for each k, a 6, > 0 such that 

whenever d ( x ,  x’) < 6,. Set 6=  min 6,. Thus 6 > 0. Now iff is any function 

which belongs to YC C F ,  we can find anfk E Jlr, such that 
lSkS?Z 

We see from these two inequalities that, whenever d ( x ,  x’) < 6, 

d ’ (f( x ) , f( x ’ ) ) d d ‘ df( x ) , f ,  ( x ) ) + d‘ d f i c  ( x ) , fk ( x ’ ) ) + d’ (fk (x ’ ) f(x ’ ) ) 
€ € E  s A U , ~ )  + Z + ~ c f , f , )  < - + - + - = E  

3 3 3 3  

Since this must be true for every f E Y and the same 6 will do for every suchf, 
we conclude that YC is ,equicontinuous. 

Corollary: Let ( X ,  d )  be a compact metric space. Then a closed subset 
YC of ( %? ( X )  , A) is compact if and only if it. is equicontinuous and bounded. 
Proof: If YC is bounded, then there is a finite number M such that 

lub lub If(%) - g ( x )  I = A (  YC) < M 
f , g E X  x E X  

Hence the ranges of the functions belonging to YC all lie in some fixed bounded 
subset Y of the complex plane (or the real line) and we can choose Y to be 
closed (since Y C y and d ( Y )  = d ( y ) ) .  The Heine-Bore1 theorem shows that Y 
is compact. Clearly YC c %? ( X ,  Y )  c %? ( X ) .  

Now suppose YC is a compact subset of 53‘ ( X ) .  Then Theorem 6.22 shows 
that YC is bounded and so we can find a compact set Y of complex (or real) 
numbers such that YC C %? ( X ,  Y ) .  I t  follows from Theorem 6.19 that YC is a 
compact subset of (%? ( X ,  Y )  , A)  and, since compact sets are also relatively 
compact, Theorem 11.13 shows that YC is equicontinuous. 

Conversely, if YC is equicontinuous and bounded, then we can find a 
compact set of complex (or real) numbers Y such that YC C %? ( X ,  Y ) .  Hence 
Theorem 11.13 shows that YC is a relatively compact set of the metric space 
( %? ( X ,  Y )  , A) .  Thus, by Theorem 11.11, every infinite sequence in Y has a 
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limit point in %? ( X ,  Y ) .  But since 5Y ( X ,  Y )  C %? ( X )  , we see that every infinite 
sequence in YC has a limit point in%? ( X )  and, using Theorem 11.11 again, we 
see that Y is a relatively compact subset of the metric space ( %? ( X ) ,  A) .  
Since, by hypothesis, YC is a closed subset of this metric space (i.e., YC = p), 
this shows that YC is compact. 

We are now going to establish a result (Theorem 11.19) which shows that 
every family of real valued functions (on a compact metric space X )  which is 
closed under certain operations and which is sufficiently “rich” can be used 
to approximate uniformly every continuous real valued function on X .  This 
very famous theorem is known as the Stone-Weierstrass theorem. The original 
form of the theorem, discovered by Weierstrass, concerned the real valued 
continuous functions defined on an interval [a,  b] .  Now since any polynomial 
p (with real coefficients) defined on [a,  b],40 say 

P ( X ) = E ~ ~ + U ~ X +  . . . + a n X n  x E [a ,  b ]  

is a continuous function, we know from Theorem 11.6 that the limit of any 
uniformly convergent sequence of such polynomials is also a continuous real 
function. Weierstrass showed that the converse of this result is also true; 
that is, every continuous real valued function on [a ,  b ]  is the limit of a 
uniformly convergent sequence of polynomials. 

Stone generalized this result by first replacing the interval [a ,  b]  by a 
compact topological space X (we shall limit ourselves here to replacing [a ,  b]  
by a compact metric space) and then by finding a subfamily of the continuous 
real valued functions on X which has all those properties of the polynomials 
that made the Weierstrass theorem possible. 

Now let 1 be the constant function which assigns the number 1 to every 
x in [a ,  b] and let j be the natural injection of [a ,  b]  into R1; that is, 

j(x) = X  for every x E [a ,  b]  

The family 9 of all polynomials on [a ,  b]  40 is just the set of all functions 
which can be built up from these two functions by successively applying the 
operations of addition, multiplication, and multiplication by real numbers 
(scalars). Thus if ao, . . ., an are real numbers, the members of 9 are func- 

See page 218. 
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tions of the form 

a o - l + a i + a 2 j 2 +  . . . + a i T 1  

As pointed out in chapter 8 9 is a subalgebra of the continuous real 
valued functions on [a,  b ] .  Aside from the fact that 9 is an algebra there are 
two additional properties of 9 that make the Weierstrass theorem possible. 
These properties are given in Definition 11.18. Theorem 7.4 and the remarks 
following Theorem 11.2 show that the Weierstrass theorem is equivalent to 
the assertion that p, the closure of 9 in the metric space (%‘([a,  b ] ) ,  A ) ,  be 
equal to %‘([a, b ] )  . Before proving the Stone-Weierstrass theorem, it is neces- 
sary to obtain some preliminary results. 

Definition 11.14: Let I be a subset of the positive integers and let 
R = { f i l i  E I> be a fami l y  of real-valued functions defined on a set X .  The 
upper envelope of the fami ly  R, which is denoted by sup f i ,  is the function 
h defined by iEI 

h ( x )  = sup fi(x) for all x E X 
i € I  

The lower envelope is defined similarly and is denoted by inf fi. If R con- 
tains only two functions, say f and g, then the upper and lower envelopes of 
R are, respectively, denoted by sup (f, g )  and inf (f, g ) .  

i € 1  

If fi , fi, f3 are real valued functions defined on a set X and h = sup cfi, f2), 
then sup f i= sup (h ,  f3). 

i E {l ,  2 .3 )  

Definition 11.15: A subset d of g(X, R ‘) is said to be a lattice subset 
$,for every f, g E d, the upper and lower envelopes, sup (f, g) and inf (f, g) , 
also belong to d. 

It is easy to see from the remark following the preceding definition that 
if d is a lattice subset and {fi l i  E I }  is any finite subcollection of the elements 
of d, then sup fi also belongs to d. Of course, a similar conclusion holds for 

i E 1  inf fi. 
i E 1  
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Iff and g are real valued functions on a set X ,  we shall write f > g  if 
f (x) > g ( x )  for every x E X .  And we define the function If by 

If I(x> = Ifb> I for every x E X 

Theorem 11.16: Let K be compact and let s? be a lattice subset of 
( g ( K ,  R 1 ) ,  A ) .  I f f  E V ( K ,  R1)and  i f ,  for  any E > 0 and any  x, y E K ,  there 
exists a function g,, E d such that 

and ( 11-20) 

I f ( Y )  -gx, Y(Y)I <; 
then f E 2. 
Proof: Let E > 0 be given. For each x, y E K there exists by hypothesis a func- 
tion gx, which satisfies the inequalities (11-20). Hence let us set 

Since the function g,, - f is continuous and (- 00, ~ / 2 )  is an open subset of 
R1,  Theorem 8.7 shows that Vx,y is open. In addition, the second inequality 
(11-20) shows that y E V,, y. Hence the family ax= { Vx,yl y E K }  is an open 
cover of K. Since K is compact, there exists finitely many points of K ,  say 

?1 

y i ,  . . . Yn, such that K C 2 Tx,  yi. Set 
2 = 1  

gx= inf gx,yi 
i € { l , .  . .,n) 

Then g,(p) < f ( p )  + E / Z  for every p E K.  Since d is a lattice subset, g,  E d. 
Also, since the first inequality (11-20) shows that g,, yi > f (x) - ~ / 2 ,  it follows 
that g ( x )  > f (x) - ~ / 2 .  

Now set 

Vx={P € K 1 g x ( P )  - - f ( P )  >- ;} 
Since g,  -f is continuous, we see as before from Theorem 8.7 that V ,  is open 
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and that x E V,. Hence Cl={V,lx E K }  is an open cover of K. Since K is 
compact there exists finitely many points of K ,  say xl, . . ., xk, such that 
{ V,{lI s i s k} is an open cover of K. Set 

g= sup gxi 
i E { l , .  . ., k} 

Then, 

g ( p >  > f ( p )  -; for all p E K (11-21) 

Since d is a lattice subset, g E d. Also, since, for every i =  1 , 2 ,  . . ., k and 
every p E K ,  gXi(p) < f ( p )  + €12, it follows that 

When this equation is combined with equation (11-21) we find, 

Thus we have found a point g E d such that g E B ( f ;  E ) .  Since E was arbi- 
trary, this shows that f is an adherence point of d. 

Theorem 11.11: Let K be compact. Then every closed subalgebra d 
of g ( K ,  R1) is a lattice subset of V ( K ,  R l ) .  
Proof: Suppose f E d. Since K is compact, f is bounded (by corollary 1 of 
Theorem 8.20) and 

is a finite number. Set 
f l b ;  f # 0 
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Since d is an algebra, g E a?. Now fix E > 0. We have shown in the example 
following Dini’s theorem (Theorem 11.7) that there exists a sequence of poly- 
nomials {P,} on [- 1, 13 which converges uniformly to the function which 
associates with every x E [- 1, 11 its absolute value 1x1, and which has the 
property that for every n, P,(O) = 0. We can therefore find an integer n such 
that 

I ~ x l - ~ ~ ( x > ~  <; for allx E [-I, 11 

Since P ,  is a polynomial and P,(O) = 0, there must be real numbers, say 
al,  . . ., ah., such that 

It is clear that for every y E K ,  g(y) E [- 1, 11. Hence for every y E K 

Since d is an algebra which containsg, it follows that the function 

belongs to d. Now 

Since E was arbitrary we have shown that every ball B (  Igl; E )  about Igl 
contains a point of d. Thus /gl is an adherence point of d. Using the fact that 
d is closed, we see that Igl E d. Nowf= bg implies I f /  = blgl. Since d is 
an algebra we conclude that I f 1  E d. Hence we have shown that If1 belongs 
to d whenever f does. 

Now supposefl andf2 are any two members of d. Clearly 
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Since d is an algebra, f i  - f 2 .  E A?. Hence the preceding result shows 
Ifi -fi I E d. It therefore follows from the fact that d is an algebra that 
sup cfl, fi) and inf cfl, fi) also belong to d, and this shows d is a lattice 
subset. 

Definition 11.18: Let d be a fami ty  of functions from a set X into a 
set Y. Then d is said to separate points of X iJ for  each pair of distinct points 
x, y E X ,  there exists a n  f E d such that f(x) # f ( y ) .  

If for  each x E X there exists a g E d such that g ( x )  Z 0, then d is said 
to vanish at no point of X .  

Theorem 11.19 : Let K be a compact metric space. If d is a subalgebra 
of (V?(K, R 1 ) ,  A) such that A? separates points of K and d vanishes at no 
point of K ,  then - 

d = V ? ( K ,  R1) 

Proof: Theorems 8.15 and 6.13 show that 2 is a closed subalgebra of g ( K ,  R1) .  
Hence Theorem 11.17 shows that 2 is a lattice subset. Since the closure of 
A? is 2, it follows from Theorem 11.16 that it is sufficient to prove that for 
every f E V?(K, R1)  and for each pair of distinct points x, y E K ,  there exists 
a function g x ,  E 2 such that 

- 

and (11-22) 

We shall show that there exists a function gx,y E d C 2 with this property. 
By hypothesis there exist functions u and h in& such that u(x) # u(y )  and 
h ( x )  ZO. Put 

v = u + p h  

where p is a real number which we choose as follows: 

such that 
If u(x) # 0, set p= 0. If u(x) =E 0, then u ( y )  f 0 and so there is a p Z 0 

P [ h ( x )  -h(r)I # U(Y) 

Since A? is an algebra, v E d and our choice of p shows that v ( x )  Z v ( y )  
and v ( x )  # 0. Now set 
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Clearly y # 0 and if we set 

it follows that g,  E d, g , ( x )  = 1, and gx (y )  = 0. 
In a similar way we can construct a function g, E d such that 

Then g,, , E d and satisfies equation (11-22). 

Theorem 11.19 does not hold for algebras of complex valued functions. 
However the conclusion does hold for a subalgebra d of fY ( X ,  C) if we impose 
an extra condition on d-namely, that d be self-adjoint. This means that if 
f~ d then its complex conjugate $also belongs to d. The complex Conjugate 
of a function f on a set K is defined to be the function $ such that 

j(x) = f ( x )  for all x E K 

Corollary: Let K be compact and d be a complex self-adjoint sub- 
algebra of fY(K,  C) which separates points of K and vanishes at no point of 
K. Then 

Proof: Let d R  be the set of all real valued continuous functions on K which 
belong to d. Since the sum and product of two real functions are real functions 
and since the product of a real function and a real number is a real function, 
it is easy to see that d R  is a subalgebra of d over the real numbers. I f f€  d 
then there exist real functions u and v such thatf= u+ iv and 2u= f+f Since 
d is a self-adjoint algebra we see that u E d R .  

If x1 and x2 are distinct points of K ,  there exists an fE d such that 
f ( x 1 )  = 1 and f ( x 2 )  = 0. Hence O= u(x2) # u(x1) = 1, which shows that dR 
separates points of K.  If x E K then there exists a g E d such that g ( x )  # 0. 
Therefore we can find a complex number h such that hg(x)  > 0. Now set 
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f= Xg. Then f E d and u= (1/2) (ft-f) belongs to d, . Clearly u(x) > 0. 
Hence d, vanishes at no point of K. 

Thus d R  satisfies the hypothesis of Theorem 11.19, which implies 

Hence every real valued continuous function on K belongs to 2 R .  Clearly 
d R  C 2. Therefore every real valued continuous function on K belongs to 
z. Now iff E &(K,  C) then there are functions u, v E %‘(K, R1) such that 

f = u + i v  

Hence u E 2 and v E 2. Since the closure of an algebra is also an algebra 
(Theorem 8.15) we see that f E 2; that is, 

- 

Theorem 11.19 and its corollary are among the most important facts in 
modern analysis. For applications it is convenient to restate this theorem in 
the following way: 

If { fala E A }  =a is a fami ly  of elements of V ( K ,  R1) which separates 
points of the compact set K and vanishes at .no point of K ,  then given any  real 
valued continuous functions f on K there is a sequence (g,} of polynomials in 
SZ which converges ungormly to f. 

with the subalgebra of 
g ( K ,  R 1 )  generated by il then we see from Theorem 7.4 and the remarks 
following Theorem 11.3 that this result follows directly from Theorem 11.19. 

Let K be a compact subset of R k  and let d be the algebra whose points 
are the restrictions to K of the polynomials in the set 8 k  defined by equation 
(8-11). Since all the coordinates of two distinct points of K cannot be the 
same, & separates the point of K .  Also since d contains the constant func- 
tions, it vanishes at no point of K .  Hence, any real valued continuous function 
defined on a compact subset K C Rk is the uniform limit of a sequence of 
these polynomials. 

Let K be the unit circle in the complex plane parametrized by the angle 
d, so that the continuous functions on K can be identified with the continuous 
functions on R1 having period 2; thus, 

If we associate the set of all polynomials in 
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Let d be the complex algebra generated by the constant functions and the 
functions whose values are eime and e-ime. Then the elements of d are the 
trigonometric polynomials whose values are of the form 

It is easy to see that d is a self-adjoint algebra which separates points of K 
and vanishes at no point of K .  Hence any continuous complex-valued function 
defined on R 1  which is periodic with a period of 2 is the uniform limit of a 
sequence of trigonometric polynomials. 
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COMMONLY USED’ SYMBOLS AND SPECIAL NOTATIONS 

ball about the point p with radius E 

set of all bounded functions fromX to Y 
set of all complex numbers 
set of all continuous functions from X to Y 
set of all bounded continuous functions fromX to Y 
set of all continuous functions fromX to Y which vanish at  

metric (also diameter and distance between sets) 
metric on product space 
family of all functions from x to Y 
greatest lower bound 
imaginary part (of complex number) 
identity map 
greatest lower bound (infimum) 
set of positive integers 
natural injection of set A 
limit 

infinity 

inferior limit 

superior limit 

least upper bound 
least upper bound (of finite set) 
greatest lower bound (of finite set) 
k-dimensional Euclidean space 
real numbers 
real part (of complex number) 
least upper bound (supremum) 
small positive number 
empty set 
set inclusions 
membership in a set 
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intersection 
union 
(overbar) closure of a set 
(superscript) complement of a set 
ordered pair, ordered n-tuple 
norm in Rk, absolute value in R 1  and R2 
norm in general linear space 
(prime) derived set 
set notation, or sequence 
direct product 
“exists,” “for at least one” 
(superscript) interior of a set 
composition (written as f 0 g)  
metric in function space 
upper and lower bounds for the real numbers 
equivalence 
convergence, improper convergence, function from one 

segment 
interval (closed) 
intervals (half open) 

set to another (written as f : X + Y )  

238 



REFERENCES 

1. HALMOS, PAUL R.: Naive Set Theory. 
2. PERVIN, WILLIAM J.: Foundations of General Topology. Academic Press, 

3. CHOQUET, GUSTAV: Topology. Academic Press, 1966. 
4. SIMMONS, GEORGE F.: Introduction to Topology and Modern Analysis. 

5. HEWITT, EDWIN: The RGle of Compactness in Analysis. Am. Math. 

D. Van Nostrand Co., Inc., 1960. 

1964. 

McGraw-Hill Book Co., Inc., 1963. 

Monthly, vol. 67, 1960, pp. 499-516. 

BACHMAN, GEORGE; and NARICI, L.: Functional Analysis. Academic Press, 

DIEUDONNE, JEAN: Foundations of Modern Analysis. Academic Press, 1960. 
GLEASON, ANDREW M.: Fundamentals of Abstract Analysis. Addison-Wesley 

Publ. Co., 1966. 
KOLMOGOROV, A.; and FOMIN, S.: Metric and Normed Spaces. Vol. 1 of Ele- 

ments of the Theory of Functions and Functional Analysis. Graylock Press, 
1957. 

1966. 

ROYDEN, H. L.: Real Analysis. Macmillan Co., 1963. 
RUDIN, WALTER: Principles of Mathematical Analysis. Second ed., McGraw- 

Hill Book Co., Inc., 1964. 

239 





Abel, Niels Henrik, 189 
Abelian group, 22 
absolute convergence, 197 
absolute value, 17, 21 

addition 
as norm, 25,28 

axioms for real numbers, 16 
of elements of Euclidean space, 26 
of functions, 142 
of vectors, 22 

additive inverse for vectors, 23 
adherence point, 71 

convergent sequences, 106 
algebra, 141 

Banach, 164 
commutative, 141 
function, ch. 8, 129 et seq. 
normed, 1% 
self-adjoint, 234 
unity of, 141 

algebraic fixed point theorems, 180 
Archimedes, axiom of, 19 
Arzela’s theorem, 224 
Ascoli’s theorem, 224 
associative laws, 9,56, 141 
axiom 

completeness, 18, 21 
field, 16, 21 
Archimedes, 19 
order, 16,21 

about limit points of convergent se- 

closed, 82 
in direct product of metric spaces, 70 

ball, 68,82 

quences, 107 

in discrete metric space, 70 
in extended real number system, 157 
in normed linear spaces, 69 
in subspaces, 84 

Banach algebra, 164 
Banach, S., 21 
Banach space, 164 
Banach’s theorem, 180 
base for open sets of a metric space, 99 
Bernoulli, James, 31 
bijection, 40 
binary set operations and mappings, 42 
binomial theorem, 127 
Bolzano-Weierstrass theorem, 96 
bounds, 17 

of closed set of real numbers, 83 
bounded continuous functions 

set of all, 205 
bounded functions, 65, 148 

set of all, 148, 205 
bounded sequence, 105 
bounded subset, 89 

Cantor, George F. L. P., 1, 21,63, 103 
Cantor’s diagonalization theorem, 60 
cardinal number, 47 
Cartesian product, 12 
Cauchy, Augustin- Louis, 103, 129, 189 
Cauchy 

totally, 98 

completeness, ch. 9, 159 et seq. 
criterion for convergence, 165 
sequence, 159, 163 
tests for series, 193, 196 

ball, 82 
set, 63, 73 

closed 

241 



ABSTRACT AN A L Y SIS 

closure of a set, 72 
collection 

of all subsets, 36,44 
of sets, 4, 53 
countable, 55,58 
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infinite sets, 47 
injection, natural, 44 
injective function, 37 
interior of a set, 72 
interior point of a set, 71 
intersection, 7 
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invariant subset, 179 
invariant subspace, 179 
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image, 37 
mapping, 39 
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multiplication 

natural injection, 44 
natural numbers, 15 
necessary conditions, 2 
neighborhoods, 81 
nested sequences, 92 
net, E -, 97 
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sequence - Continued 
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subsequences of, 114 
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